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This supplementary file contains additional theoretical, simulation, and empirical re-

sults that are omitted from the main text. We first extend the simulation experiments

to better understand the performance of GAGFL in Section S.1. Then we present the

empirical analysis of the democracy–income relationship with different methods and under

alternative specifications in Section S.2, and an additional application on the determinants

of cross-country difference in savings behavior in Section S.3. In Section S.4, we present

the proofs for the main result that are not included in the main text. In Section S.5, we

provide the theoretical analysis for models with individual specific fixed effects. Section

S.6 discusses models in which a part of coefficients are fully time varying. Finally, Sec-

tion S.7 considers the non-iterative estimator obtained by applying AGFL given the initial

estimates of group membership structure.

S.1 Additional simulation studies

In this section, we present additional simulation results. There are five simulation exercises.

First we consider the Bayesian information criterion (BIC) based on initial estimates for

choosing the number of groups. Second, we examine cases with group-dependent regressors.

Third, we consider designs with small groups and those with close break dates. Fourth, we

investigate the performance of GAGFL when group heterogeneity is small and when break

sizes are small. Lastly, performances of initial estimates are evaluated.
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S.1.1 Determining the number of groups based on initial esti-

mates

We examine the performance of BIC based on the initial estimates. Although using the

initial and final (iterative) estimates to compute the BIC are asymptotically equivalent,

we argue that the potential disadvantage of using initial estimates is that less efficient

coefficient estimates may result in less accurate selection of G in finite samples.

Table S.1: Group number selection frequency using BIC based in initial estimates (G0 = 3)

σ󰂃 N T 1 2 3 4 5 1 2 3 4 5

DGP.1 DGP.2
0.5 50 10 0.000 0.000 0.976 0.024 0.000 0.000 0.000 0.996 0.004 0.000

50 20 0.000 0.000 0.984 0.016 0.000 0.000 0.000 0.988 0.012 0.000
50 40 0.000 0.000 0.984 0.016 0.000 0.000 0.000 0.992 0.008 0.000
100 10 0.000 0.000 0.988 0.012 0.000 0.000 0.000 0.984 0.012 0.004
100 20 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.976 0.024 0.000
100 40 0.000 0.000 0.984 0.016 0.000 0.000 0.000 0.984 0.016 0.000

0.75 50 10 0.000 0.008 0.976 0.016 0.000 0.000 0.004 0.972 0.024 0.000
50 20 0.000 0.072 0.924 0.004 0.000 0.000 0.012 0.952 0.036 0.000
50 40 0.000 0.060 0.940 0.000 0.000 0.000 0.012 0.956 0.032 0.000
100 10 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.992 0.008 0.000
100 20 0.000 0.000 0.964 0.036 0.000 0.000 0.000 0.960 0.040 0.000
100 40 0.000 0.000 0.968 0.032 0.000 0.000 0.000 0.984 0.016 0.000

DGP.3 DGP.4
0.5 50 10 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.922 0.024 0.004

50 20 0.000 0.002 0.986 0.012 0.000 0.000 0.000 0.968 0.032 0.000
50 40 0.000 0.000 0.990 0.010 0.000 0.000 0.000 0.984 0.016 0.000
100 10 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.796 0.180 0.024
100 20 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.952 0.048 0.000
100 40 0.000 0.000 0.992 0.008 0.000 0.000 0.000 0.964 0.032 0.004

0.75 50 10 0.000 0.056 0.936 0.008 0.000 0.000 0.000 0.916 0.084 0.000
50 20 0.000 0.222 0.778 0.000 0.000 0.000 0.016 0.904 0.076 0.004
50 40 0.000 0.158 0.842 0.000 0.000 0.000 0.040 0.924 0.032 0.004
100 10 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.720 0.252 0.028
100 20 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.888 0.104 0.008
100 40 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.944 0.044 0.012

Table S.1 investigates the performance of BIC based on the initial estimates. All

DGPs remain the same as in the paper. Compared with the BIC based on the final
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(iterative) estimates, using initial estimates indeed lowers the frequency of selecting the

correct number of groups in almost all cases, although to a small extent, except in DGP.3

when N = 50 and T = 10. In DGP.3 with small samples, break estimation is less precise

since data are first–differenced, and this further contaminates the determination of G. On

the contrary, initial estimates that do not detect breaks lead to slightly more accurate

selection of G.

S.1.2 Group-dependent regressors

We examine the cases where the regressor is group dependent, and generate xit such that

xit = fhi
+ νit, where fh is drawn from a standard normal distribution for h = 1, . . . , H

but common for units within a group, and νit is idiosyncratic and also follows a standard

normal distribution for all i and t. We consider two subcases. First, fh and βg,t share the

same the group structure (i.e., hi = gi, ∀i). Second, the group structure of fh differs from

that of βg,t. In the latter case, we generate fh from four groups with N1 : N2 : N3 : N4 =

0.2 : 0.2 : 0.2 : 0.4, while the group structure of βg,t remains the same as specified in the

paper (three groups with N1 : N2 : N3 = 0.3 : 0.3 : 0.4). hi and gi are independent. To save

space, we report the performance of clustering and break detection in two leading cases,

DGP.1 and DGP.3.

Table S.2: Average misclustering rate: Regressors with group dependence

N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Same group structure as β
DGP.1 σ󰂃 = 0.5 0.0064 0.0040 0.0010 0.0050 0.0008 0.0021

σ󰂃 = 0.75 0.0228 0.0098 0.0014 0.0219 0.0117 0.0039

DGP.3 σ󰂃 = 0.5 0.1083 0.0375 0.0072 0.0986 0.0240 0.0078
σ󰂃 = 0.75 0.1483 0.0696 0.0298 0.1422 0.0575 0.0175

Different group structure from β
DGP.1 σ󰂃 = 0.5 0.0053 0.0023 0.0010 0.0063 0.0017 0.0023

σ󰂃 = 0.75 0.0208 0.0081 0.0036 0.0213 0.0109 0.0053

DGP.3 σ󰂃 = 0.5 0.1208 0.0389 0.0108 0.1166 0.0289 0.0112
σ󰂃 = 0.75 0.1535 0.0768 0.0273 0.1585 0.0644 0.0151
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Table S.2 presents the average misclustering rate when the regressor is characterized by

group dependence. It shows that allowing for group dependent regressors does not affect

clustering accuracy in DGP.1, and the misclustering rates are similar to those in the case

of independent regressors. In DGP.3 with small T , the misclustering rates in the presence

of group dependent regressors tend to be higher than those in the case of independent

regressors. This is not surprising since first-differencing removes variation of regressors,

and the lack of variation is more severe when regressors are cross-sectionally dependent

and the sample size is small. Even in this difficult case with limited variation of regressors,

our approach can still correctly classify roughly 90% of units in the smallest sample when

σ󰂃 = 0.5 and 85% when σ󰂃 = 0.75. As T increases, the misclustering rate drops quickly,

and reaches a similarly low level to that in the case of independent regressors when T = 40.

These results hold no matter whether the group structure of regressors coincides that of

coefficients.

Next, we examine the accuracy of break detection when regressors are group dependent.

Table S.3 provides the average frequency of correct estimation of the number of breaks in

the presence of group dependent regressors. The estimated numbers of breaks are similar

to those in the case of independent regressors no matter whether the group structure of

regressors coincides the structure of slope coefficients. Particularly, the estimated number

of breaks is fairly accurate except in DGP.3 with large errors and small samples. When

the number of breaks is not estimated correctly, it is typically overestimated, and the

accuracy improves rapidly as either N or T increases. Table S.4 presents the Hausdorff

error of break-date estimates when regressors are group dependent. Similarly, the break

dates can be estimated accurately in almost all cases and the error is as small as in the

case of independent regressors except in DGP.3 with large noise. The similar performance

of clustering and break detection in the two cases of dependent and independent regressors

jointly leads to a similar performance of coefficient estimates.

S.1.3 Small groups and close break dates

To better understand how cross-sectional variation plays a role in the performance of

GAGFL, we consider two experiments: one with small groups and the other with closer

break dates.

First, we consider the case where the number of individual units in each group follows

N1 : N2 : N3 = 0.1 : 0.8 : 0.1, and small groups that contain only a few units emerge.

Since coefficient estimation makes use of within-group cross-sectional variation, a small
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Table S.3: Average frequency of correct estimation of the number of breaks: Regressors
with group dependence

N = 50 N = 100
σ󰂃 Group T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Same group structure as β
DGP.1 0.5 G1 (m0

1,0 = 2) 0.993 0.997 0.990 0.997 0.997 0.995
G2 (m0

2,0 = 2) 0.993 0.998 0.993 0.997 0.998 0.996
G3 (m0

3,0 = 0) 0.988 0.997 0.997 0.998 0.999 0.999

0.75 G1 (m0
1,0 = 2) 0.862 0.936 0.976 0.976 0.992 0.992

G2 (m0
2,0 = 2) 0.858 0.978 0.992 0.970 0.992 0.992

G3 (m0
3,0 = 0) 0.854 0.948 0.964 0.974 0.996 0.998

DGP.3 0.5 G1 (m0
1,0 = 2) 0.630 0.847 0.959 0.774 0.924 0.982

G2 (m0
2,0 = 2) 0.644 0.889 0.974 0.814 0.966 0.994

G3 (m0
3,0 = 0) 0.716 0.868 0.933 0.880 0.954 0.974

0.75 G1 (m0
1,0 = 2) 0.260 0.378 0.618 0.382 0.658 0.876

G2 (m0
2,0 = 2) 0.162 0.404 0.756 0.342 0.712 0.936

G3 (m0
3,0 = 0) 0.292 0.445 0.608 0.454 0.710 0.890

Different group structure from β
DGP.1 0.5 G1 (m0

1,0 = 2) 0.992 0.996 0.998 0.998 0.998 0.999
G2 (m0

2,0 = 2) 0.998 0.996 0.998 0.999 0.999 0.995
G3 (m0

3,0 = 0) 0.988 1.000 1.000 1.000 0.999 1.000

0.75 G1 (m0
1,0 = 2) 0.868 0.958 0.982 0.978 0.988 0.996

G2 (m0
2,0 = 2) 0.858 0.982 0.990 0.974 0.990 0.995

G3 (m0
3,0 = 0) 0.854 0.948 0.964 0.972 0.996 0.999

DGP.3 0.5 G1 (m0
1,0 = 2) 0.596 0.854 0.951 0.738 0.946 0.978

G2 (m0
2,0 = 2) 0.664 0.902 0.989 0.774 0.957 0.996

G3 (m0
3,0 = 0) 0.738 0.878 0.929 0.902 0.957 0.962

0.75 G1 (m0
1,0 = 2) 0.220 0.362 0.636 0.582 0.664 0.860

G2 (m0
2,0 = 2) 0.176 0.384 0.750 0.598 0.710 0.940

G3 (m0
3,0 = 0) 0.314 0.442 0.602 0.670 0.748 0.882
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Table S.4: Hausdorff error of break date estimates: Regressors with group dependence

N = 50 N = 100
σ󰂃 Group T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Same group structure as β
DGP.1 0.5 G1 (m0

1,0 = 2) 0.0016 0.0016 0.0017 0.0004 0.0000 0.0005
G2 (m0

2,0 = 2) 0.0026 0.0004 0.0005 0.0000 0.0001 0.0003

0.75 G1 (m0
1,0 = 2) 0.0255 0.0126 0.0027 0.0046 0.0012 0.0021

G2 (m0
2,0 = 2) 0.0222 0.0080 0.0062 0.0046 0.0014 0.0004

DGP.3 0.5 G1 (m0
1,0 = 2) 0.0511 0.0246 0.0075 0.0243 0.0112 0.0030

G2 (m0
2,0 = 2) 0.0374 0.0187 0.0097 0.0158 0.0071 0.0044

0.75 G1 (m0
1,0 = 2) 0.1121 0.1126 0.0655 0.0821 0.0478 0.0191

G2 (m0
2,0 = 2) 0.0790 0.0731 0.0553 0.0526 0.0390 0.0142

Different group structure from β
DGP.1 0.5 G1 (m0

1,0 = 2) 0.0010 0.0010 0.0003 0.0006 0.0002 0.0008
G2 (m0

2,0 = 2) 0.0016 0.0003 0.0003 0.0008 0.0000 0.0004

0.75 G1 (m0
1,0 = 2) 0.0222 0.0085 0.0026 0.0026 0.0025 0.0007

G2 (m0
2,0 = 2) 0.0228 0.0080 0.0066 0.0046 0.0011 0.0008

DGP.3 0.5 G1 (m0
1,0 = 2) 0.0511 0.0195 0.0097 0.0236 0.0051 0.0041

G2 (m0
2,0 = 2) 0.0374 0.0158 0.0124 0.0118 0.0081 0.0072

0.75 G1 (m0
1,0 = 2) 0.1121 0.1131 0.0651 0.0611 0.0463 0.0240

G2 (m0
2,0 = 2) 0.0790 0.0705 0.0564 0.0448 0.0349 0.0158

Notes: HD ratios of GAGFL estimates for G3 (with no breaks) are not reported because they are all zeros.
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Table S.5: GAGFL clustering and break detection: N1 : N2 : N3 = 0.1 : 0.8 : 0.1

N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP.1, σ󰂃 = 0.5
Misclustering rate 0.1615 0.1489 0.0778 0.1046 0.0970 0.0760

Freq. of correct estimation of number of breaks
G1 (m0

1,0 = 2) 0.5980 0.6340 0.5080 0.8960 0.9000 0.9160
G2 (m0

2,0 = 2) 0.9880 0.9960 1.0000 0.9960 1.0000 1.0000
G3 (m0

3,0 = 0) 0.4800 0.5960 0.7860 0.7340 0.7640 0.8280

Hausdorff error
G1 (m0

1,0 = 2) 0.0788 0.0691 0.0808 0.0190 0.0162 0.0148
G2 (m0

2,0 = 2) 0.0002 0.0005 0.0000 0.0008 0.0000 0.0000

DGP.3, σ󰂃 = 0.5
Misclustering rate 0.1872 0.1816 0.1133 0.1308 0.1283 0.1145

Freq. of correct estimation of number of breaks
G1 (m0

1,0 = 2) 0.2840 0.3120 0.3480 0.5320 0.6140 0.7020
G2 (m0

2,0 = 2) 0.8820 0.9500 0.9760 0.9220 0.9920 0.9920
G3 (m0

3,0 = 0) 0.0880 0.2320 0.5640 0.3660 0.5080 0.6820

Hausdorff error
G1 (m0

1,0 = 2) 0.1439 0.1407 0.1267 0.0826 0.0581 0.0465
G2 (m0

2,0 = 2) 0.0088 0.0029 0.0000 0.0060 0.0001 0.0005
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group (with a few units) is expected to result in less accurate coefficient estimates, and

further inaccurate clustering and break detection. Tables S.5 summarizes the average

misclustering rate, frequency of correct estimation of the number of breaks, and Hausdorff

error of break-date estimates in DGP.1 and DGP.3 in the presence of small groups. As

expected, the misclustering rates in both DGPs are higher than those in the cases of

similarly sized groups (N1 : N2 : N3 = 0.3 : 0.3 : 0.4). With the smallest sample N = 50

and T = 10, GAGFL can correctly classify roughly 84% of units in DGP.1 and 81% in

DGP.3. Further examination reveals that the relatively poorer performance of clustering is

due to misclassification of units from Groups 1 and 3, the two smallest groups. Increasing

T helps improve classification accuracy. But unlike in the case of similarly sized groups,

the accuracy also increases significantly by enlarging N because cross-sectional variation

in the small groups is increased.

The number of breaks is also estimated less accurately for the small groups, but not

for the large group. Particularly, GAGFL tends to overestimate the number of groups in

Group 1 and 3, while it can still correctly estimate two breaks in Group 2. Compared with

break-date estimates in the cases of similarly sized groups, the estimated break dates in

the small group, namely Group 1, are less precise, but the estimates in the large group,

namely Group 2, are more accurate due to a large cross-sectional sample. The conclusions

from DGP.2 and DGP.4 are highly similar and thus not reported.

Next, we study the performance of GAGFL when the break dates are close. Again,

we demonstrate this situation using DGP.1 and DGP.3, but change the break dates. The

breaks in the first group occur at ⌊T/2⌋ and ⌊2T/3⌋, and in the second group at ⌊T/3⌋
and ⌊T/2⌋, where ⌊·⌋ takes the integer part. Now the difference between the two breaks in

both groups is just ⌊T/6⌋, i.e. 1 when T = 10, 3 when T = 20, and 6 when T = 40. For

the third group, the slope coefficient is stable without a break.

Table S.6 evaluates the performance of GAGFL in DGP.1 and DGP.3 with closer break

dates, again based on its misclustering rate, frequency of correct estimation of the number

of breaks, and Hausdorff error of break date estimates. It shows that the misclustering

rate and the accuracy of break estimation are hardly affected by shrinking the interval

between two breaks. This is because we make use of cross-sectional variation for coefficient

estimation. As long as there are sufficiently many individual units in each group, we can

consistently estimate slope coefficients (and further the groups and breaks) even when the

two breaks are consecutive.
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Table S.6: GAGFL clustering and break detection: Close break dates

N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP.1, σ󰂃 = 0.5
Misclustering rate 0.0072 0.0052 0.0047 0.0081 0.0021 0.0010

Freq. of correct estimation of number of breaks
G1 (m0

1,0 = 2) 0.9760 0.9840 0.9820 0.9960 0.9960 0.9980
G2 (m0

2,0 = 2) 0.9880 0.9940 0.9920 0.9960 0.9980 0.9940
G3 (m0

3,0 = 0) 0.9900 0.9820 0.9900 1.0000 1.0000 0.9980

Hausdorff error
G1 (m0

1,0 = 2) 0.0052 0.0026 0.0041 0.0010 0.0007 0.0008
G2 (m0

2,0 = 2) 0.0020 0.0031 0.0032 0.0004 0.0000 0.0006

DGP.3, σ󰂃 = 0.5
Misclustering rate 0.0119 0.0004 0.0000 0.0095 0.0005 0.0000

Freq. of correct estimation of number of breaks
G1 (m0

1,0 = 2) 0.8080 0.9120 0.9620 0.9520 0.9820 1.0000
G2 (m0

2,0 = 2) 0.8180 0.9040 0.9760 0.9620 0.9940 0.9980
G3 (m0

3,0 = 0) 0.7560 0.9280 0.9960 0.9240 1.0000 1.0000

Hausdorff error
G1 (m0

1,0 = 2) 0.0335 0.0136 0.0036 0.0082 0.0037 0.0000
G2 (m0

2,0 = 2) 0.0405 0.0158 0.0031 0.0084 0.0015 0.0001
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S.1.4 Small degree of group heterogeneity and break size

Now we consider the case where the breaks are small and groups are more alike. We

generate the data with the same specifications as in the paper but with different values of

parameters as follows:

β1,t =

󰀻
󰁁󰀿

󰁁󰀽

1 if 1 ≤ t < ⌊T/2⌋
1.5 if ⌊T/2⌋ ≤ t < ⌊5T/6⌋
2 if ⌊5T/6⌋ ≤ t ≤ T

, β2,t =

󰀻
󰁁󰀿

󰁁󰀽

2 if 1 ≤ t < ⌊T/3⌋
2.5 if ⌊T/3⌋ ≤ t < ⌊5T/6⌋
3 if ⌊5T/6⌋ ≤ t ≤ T

,

and

β3,t = 1.5 for all 1 ≤ t ≤ T.

Table S.7 evaluates the performance of GAGFL in DGP.1 and DGP.3 but with small

breaks and group heterogeneity. The misclustering rate is roughly 12% in DGP.1 and

15% in DGP.3 when N = 50 and T = 10, both higher than the cases with well-separated

coefficients reported in the paper. But this rate quickly decreases to less than 1.5% when

T increases to 40. Small breaks also affect break detection to some extent. When N = 50

and T = 10, the frequency of correct estimation of the number of breaks is roughly 30%

less in DGP.1 and 38% less in DGP.3 than in the cases with large breaks as reported in the

paper. But again, the accuracy improves quickly as N or T increases. When N = 100, the

frequency of correct estimation of the number of breaks is always more than 0.94. Similar

observations are found for the break date estimates. Small breaks and group heterogeneity

lead to less precise estimates of break dates, but the precision improves quickly as the

sample size increases.

S.1.5 Performance of initial estimates

Finally, we discuss the iterative feature of the algorithm. In particular, we examine the

number of iterations for the algorithm to converge, and compare the final (iterative) esti-

mates with the non-iterative estimates, say γ̇ and β(0), defined in Alogrithm 1.

Table S.8 reports the average number of iterations for Algorithm 1 to converge. On

average, the algorithm takes 2-3 steps to converge in most cases. We find that more

iterations are needed in DGP.3, since accurate estimation is more difficult for the first

differenced data. The number of iterations also increases when the variance of the error is
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Table S.7: GAGFL clustering and break detection: Smaller group heterogeneity and break
sizes

N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP.1, σ󰂃 = 0.5
Misclustering rate 0.1226 0.0433 0.0150 0.0903 0.0396 0.0103

Freq. of correct estimation of numer of breaks
G1 (m0

1,0 = 2) 0.7040 0.8360 0.7980 0.9440 0.9660 0.9640
G2 (m0

2,0 = 2) 0.8060 0.8500 0.7720 0.9820 0.9780 0.9660
G3 (m0

3,0 = 0) 0.8800 0.9780 0.9900 0.9800 0.9900 0.9880

Hausdorff error
G1 (m0

1,0 = 2) 0.0452 0.0376 0.0377 0.0144 0.0076 0.0075
G2 (m0

2,0 = 2) 0.0229 0.0282 0.0434 0.0046 0.0039 0.0058

DGP.3, σ󰂃 = 0.5
Misclustering rate 0.1569 0.0570 0.0115 0.1346 0.0440 0.0078

Freq. of correct estimation of numer of breaks
G1 (m0

1,0 = 2) 0.4803 0.5640 0.4780 0.7640 0.8300 0.8160
G2 (m0

2,0 = 2) 0.6352 0.6300 0.4440 0.8780 0.8760 0.7720
G3 (m0

3,0 = 0) 0.4803 0.9020 0.9900 0.8020 0.9840 1.0000

Hausdorff error
G1 (m0

1,0 = 2) 0.0960 0.0801 0.0860 0.0506 0.0320 0.0258
G2 (m0

2,0 = 2) 0.0729 0.0749 0.1011 0.0245 0.0205 0.0364
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Table S.8: Average number of iterations

N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP.1 σ󰂃 = 0.5 2.204 2.118 2.042 2.288 2.110 2.058
σ󰂃 = 0.75 2.750 2.740 2.256 2.796 2.594 2.170

DGP.2 σ󰂃 = 0.5 2.132 2.062 2.036 2.120 2.034 2.090
σ󰂃 = 0.75 2.464 2.338 2.092 2.542 2.298 2.066

DGP.3 σ󰂃 = 0.5 2.425 2.170 2.024 2.460 2.151 2.017
σ󰂃 = 0.75 2.744 2.755 2.305 2.941 2.744 2.192

DGP.4 σ󰂃 = 0.5 2.264 2.068 2.024 2.256 2.024 2.020
σ󰂃 = 0.75 2.868 2.624 2.200 2.704 2.312 2.020

large, but decreases as T grows. Moreover, we find that it takes more steps to converge

when we generate the data with closer break dates, small degree of group heterogeneity

and breaks, and small groups containing only very few units. To summarize, the iterative

algorithm is especially useful in finite samples when the clustering and break detection is

difficult due to, for example, high serial correlation, large noise, and more alike coefficients.

To compare the performance of non-iterative estimates with the iterative ones, we first

report the misclustering rate of the non-iterative estimates, namely γ̇ in Table S.9. For

comparison convenience, we also copy the misclustering rate of the iterative estimators γ̂

from the paper. We find the misclustering rate of iterative estimates consistently lower than

the rate of non-iterative estimates, suggesting that the clustering performance is improved

by iteration, sometimes to a large extent.

Next, we report the RMSE and the coverage probability of the non-iterative coefficient

estimates β(0) in Table S.10. Again, we also list the statistics of the iterative version β̂ for

the convenience of comparison. In general, we find that iterative estimates produce lower

RMSEs but higher coverage probability than non-iterative ones. In DGP.1, the difference

between the RMSEs of the two versions of estimates enlarges as T increases, and can reach

70% when σε = 0.75. In DGP.2, the difference is smaller but can still reach more than

30% in some cases. In DGP.3, the difference in the RMSE is smaller than in DGP.1, but

the coverage probability of iterative estimates is much higher than that of non-iterative

estimates, especially when the T and σ󰂃 are large. Similar superiority of iterative estimates

is found in most cases of DGP.4.
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Table S.9: Average misclustering rate: Comparison of non-iterative and iterative estima-
tion

N = 50 N = 100
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Non-iterative estimates
DGP.1 σ󰂃 = 0.5 0.0145 0.0184 0.0072 0.0215 0.0123 0.0157

σ󰂃 = 0.75 0.0567 0.0316 0.0190 0.0411 0.0285 0.0174

DGP.2 σ󰂃 = 0.5 0.0099 0.0068 0.0075 0.0036 0.0084 0.0278
σ󰂃 = 0.75 0.0370 0.0207 0.0221 0.0320 0.0213 0.0117

DGP.3 σ󰂃 = 0.5 0.0208 0.0043 0.0013 0.0167 0.0033 0.0030
σ󰂃 = 0.75 0.0781 0.0342 0.0150 0.0487 0.0273 0.0033

DGP.4 σ󰂃 = 0.5 0.0093 0.0028 0.0034 0.0060 0.0019 0.0040
σ󰂃 = 0.75 0.0449 0.0198 0.0094 0.0348 0.0069 0.0012

Iterative estimates
DGP.1 σ󰂃 = 0.5 0.0104 0.0026 0.0010 0.0097 0.0015 0.0000

σ󰂃 = 0.75 0.0448 0.0177 0.0027 0.0377 0.0140 0.0042

DGP.2 σ󰂃 = 0.5 0.0048 0.0025 0.0010 0.0040 0.0022 0.0001
σ󰂃 = 0.75 0.0296 0.0076 0.0028 0.0206 0.0081 0.0042

DGP.3 σ󰂃 = 0.5 0.0179 0.0024 0.0001 0.0171 0.0028 0.0020
σ󰂃 = 0.75 0.0663 0.0240 0.0041 0.0484 0.0161 0.0013

DGP.4 σ󰂃 = 0.5 0.0074 0.0005 0.0024 0.0059 0.0004 0.0040
σ󰂃 = 0.75 0.0357 0.0114 0.0016 0.0327 0.0046 0.0002
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Table S.10: RMSE and coverage probability of coefficient estimates: Comparison between
Non-iterative and iterative estimation

RMSE Coverage

σ N T Non-iterative Iterative Non-iterative Iterative

DGP.1 0.5 50 10 0.1232 0.1161 0.9224 0.9237
50 20 0.0961 0.0611 0.9196 0.9349
50 40 0.0574 0.0388 0.9438 0.9477
100 10 0.1179 0.1022 0.9146 0.9265
100 20 0.0650 0.0493 0.9341 0.9408
100 40 0.0536 0.0429 0.9295 0.9394

0.75 50 10 0.2468 0.2347 0.8275 0.8396
50 20 0.1720 0.1612 0.8816 0.8940
50 40 0.2078 0.0771 0.9164 0.9401
100 10 0.1983 0.1916 0.8794 0.8860
100 20 0.1129 0.1051 0.9175 0.9267
100 40 0.1174 0.0467 0.9268 0.9406

DGP.2 0.5 50 10 0.1071 0.0787 0.9205 0.9276
50 20 0.0578 0.0435 0.9327 0.9441
50 40 0.0439 0.0270 0.9373 0.9435
100 10 0.0651 0.0708 0.9355 0.9367
100 20 0.0547 0.0347 0.9365 0.9444
100 40 0.0456 0.0428 0.9343 0.9438

0.75 50 10 0.1860 0.1725 0.8703 0.8826
50 20 0.1104 0.0892 0.9202 0.9333
50 40 0.0811 0.0718 0.9160 0.9330
100 10 0.1517 0.1441 0.9049 0.9152
100 20 0.1254 0.0732 0.9310 0.9412
100 40 0.0521 0.0321 0.9313 0.9417
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Table S.10 (cont.): RMSE and coverage probability of coefficient estimates: Comparison
between Non-iterative and iterative estimation

RMSE Coverage

σ N T Non-iterative Iterative Non-iterative Iterative

DGP.3 0.5 50 10 0.1681 0.1588 0.8357 0.8444
50 20 0.0796 0.0747 0.8912 0.8919
50 40 0.0463 0.0438 0.9024 0.9175
100 10 0.1336 0.1339 0.8879 0.8870
100 20 0.0578 0.0573 0.9200 0.9298
100 40 0.0341 0.0301 0.9225 0.9319

0.75 50 10 0.3357 0.3212 0.7156 0.7375
50 20 0.2150 0.2010 0.7838 0.7744
50 40 0.1243 0.1027 0.8308 0.8755
100 10 0.2492 0.2428 0.7981 0.7987
100 20 0.1373 0.1294 0.8526 0.8806
100 40 0.0632 0.0564 0.9016 0.9150

DGP.4 0.5 50 10 0.4933 0.0478 0.9037 0.9140
50 20 0.0611 0.0426 0.9354 0.9416
50 40 0.0338 0.0329 0.9464 0.9478
100 10 0.0406 0.0317 0.9199 0.9312
100 20 0.0176 0.0156 0.9368 0.9386
100 40 0.0097 0.0096 0.9443 0.9482

0.75 50 10 0.0831 0.0766 0.8653 0.8771
50 20 0.0468 0.0391 0.9019 0.9060
50 40 0.0403 0.0368 0.9257 0.9327
100 10 0.0587 0.0552 0.9034 0.9107
100 20 0.0316 0.0299 0.9340 0.9444
100 40 0.0157 0.0178 0.9440 0.9435
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S.2 Additional empirical analysis in democracy–income

application

In this section, we present additional results for the democracy–income application whose

main results are given in Section 8 of the main text. In particular, we provide the results

of the initial estimates, estimates with a larger number of groups, and the results from an

alternative specification in which the intercepts (group fixed effects) are fully time varying.

We also present confidence sets for group membership.

S.2.1 Analysis with initial estimates

We examine the democracy–income relation based on the initial estimators defined in (3).

The BIC computed from the initial estimates again selects four groups, in line with the

choice based on the iterative estimators. Thus we analyze the democracy–income relation

using the initial estimator for G = 4.

Table S.11 lists the group memberships of all countries based on initial and final (itera-

tive) estimators. The group structure produced by the initial estimators resembles but not

precisely coincides the iterative estimators. Particularly, 15 countries switch group mem-

berships during iteration, most of which are Latin American and African countries, such

as Bolivia, Colombia, Costa Rica, South Africa, Tunisia, Uganda, Venezuela, and Zambia.

We then examine the initial coefficient estimates that vary at each time period as

presented in Table S.12. The initial estimates are generally in line with the iterative ones,

although sometimes less efficient. Particularly, the estimated coefficients in Group 1 are

indeed highly stable in each period for all variables. Although the lagged income effect

turns negative in the last period, different from the estimates in the previous periods,

the negative coefficient is highly insignificant. Pooling stable coefficients along the time

(as reported in Table 8 of the paper) improves the efficiency of the estimates. The fully

time varying coefficient estimates in Group 2 exhibit a clear structural break in the second

period, where the lag and income effects both turn from negative to strongly positive.

Again, the iterative estimates that pool periods 2–7 seem more efficient than the initial

estimates. In Group 3, the initial estimate of the intercept exhibits an obvious change in

the 5th period, explaining the break detected by GAGFL that occurs in the same period.

The average democracy and income effect in Group 4 seem rather volatile, and this explains

the two breaks reported by GAGFL.
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Table S.11: Initial and iterative estimates of group memberships
Init. Iter. Init. Iter. Init. Iter.

Algeria 1 1 Ghana 3 3 Nigeria 3 3
Argentina 3 3 Greece 2 2 Norway 1 1
Australia 1 1 Guatemala 4 3 Panama 2 2
Austria 1 1 Guinea 1 1 Paraguay 1 1
Belgium 1 1 Honduras 2 2 Peru 2 2
Benin 4 4 Iceland 1 1 Philippines 4 4
Bolivia 4 4 India 1 1 Portugal 2 2
Brazil 3 3 Indonesia 2 2 Romania 1 1
Burkina Faso 2 3 Iran 1 1 Rwanda 1 2
Burundi 1 2 Ireland 1 1 Sierra Leone 2 3
Cameroon 1 1 Israel 1 1 Singapore 1 1
Canada 1 1 Italy 1 1 South Africa 3 3
Central African Rep. 4 4 Jamaica 1 1 Spain 2 2
Chad 1 1 Japan 1 1 Sri Lanka 1 1
Chile 3 3 Jordan 1 1 Sweden 1 1
China 1 1 Kenya 1 1 Switzerland 1 1
Colombia 1 1 Korea, Rep. 3 3 Syrian Arab Rep. 1 1
Congo, Dem. Rep. 1 2 Luxembourg 1 1 Taiwan 2 2
Congo, Rep. 4 2 Madagascar 4 4 Tanzania 2 3
Costa Rica 1 1 Malawi 4 4 Thailand 3 2
Cote d’Ivoire 1 1 Malaysia 1 1 Togo 1 2
Cyprus 3 1 Mali 4 4 Trinidad & Tobago 1 1
Denmark 1 1 Mauritania 1 1 Tunisia 1 1
Dominican Rep. 2 1 Mexico 2 3 Turkey 4 4
Ecuador 2 2 Morocco 1 1 Uganda 2 2
Egypt, Arab Rep. 1 1 Nepal 2 2 United Kingdom 1 1
El Salvador 4 4 Netherlands 1 1 United States 1 1
Finland 1 1 New Zealand 1 1 Uruguay 3 4
France 1 1 Nicaragua 3 3 Venezuela, RB 1 1
Gabon 1 1 Niger 4 4 Zambia 4 3
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Table S.12: Income and democracy: Initial coefficient estimates of G = 4
Regime 1 2 3 4 5 6 7

Group 1 Intercept −0.3813 −0.0586 0.0799 −0.0346 −0.0471 −0.1451 0.0690
(0.0490) (0.0373) (0.0387) (0.0398) (0.0409) (0.0428) (0.0445)

Democracyt−1 1.0802 0.9764 0.8792 0.8672 0.7715 0.7680 1.0161
(0.0721) (0.0548) (0.0531) (0.0549) (0.0578) (0.0670) (0.0634)

Incomet−1 0.2676 0.0056 0.0554 0.1431 0.2032 0.2167 −0.0837
(0.0614) (0.0656) (0.0626) (0.0610) (0.0628) (0.0680) (0.0619)

Group 2 Intercept −0.9062 −0.2692 0.2832 −0.0312 0.1068 −0.0239 0.5262
(0.1344) (0.1914) (0.1792) (0.1135) (0.1084) (0.1104) (0.1043)

Democracyt−1 −0.3515 0.4194 0.0685 1.2802 0.5904 0.7961 0.1464
(0.1435) (0.1700) (0.2032) (0.2125) (0.1361) (0.1863) (0.1559)

Incomet−1 −0.0106 0.3704 0.5406 −0.1158 0.4076 0.0258 0.4566
(0.1330) (0.1209) (0.1314) (0.1485) (0.1316) (0.1637) (0.1300)

Group 3 Intercept −0.3595 −0.5152 −0.1504 −0.1789 0.5102 0.3272 0.5464
(0.1440) (0.1210) (0.1369) (0.1230) (0.1297) (0.1370) (0.1415)

Democracyt−1 0.9587 −0.7031 0.2391 0.8500 0.5936 −0.2558 0.4772
(0.2191) (0.1647) (0.1787) (0.2679) (0.2024) (0.2216) (0.3388)

Incomet−1 0.1070 1.0474 −0.9453 1.5832 0.2060 1.1095 −0.0219
(0.2270) (0.2334) (0.2060) (0.2560) (0.2655) (0.2341) (0.2968)

Group 3 Intercept 0.2513 −0.2064 −0.8996 0.5646 0.3242 −0.1536 0.2243
(0.1812) (0.1793) (0.1625) (0.2992) (0.1668) (0.1855) (0.1582)

Democracyt−1 0.4868 0.7959 0.3501 0.4393 0.5674 0.4604 1.4734
(0.1605) (0.2012) (0.2016) (0.2838) (0.1674) (0.2281) (0.2800)

Incomet−1 1.0548 −0.0027 −0.0633 0.9766 0.5050 −0.9039 0.6153
(0.1828) (0.2902) (0.2700) (0.1906) (0.2420) (0.2839) (0.1778)
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Table S.13: Income and democracy: Coefficient and regime estimates of G = 4 after first
few iteration

Regime 1 2 3 4 5 6 7

Estimates after first iteration

Group 4.1 Intercept −0.0728 (0.0205)
Democracyt−1 0.8504 (0.0274)
Incomet−1 0.1572 (0.0320)

Group 4.2 Intercept −0.9743 (0.1253) 0.1974 (0.0518)
Democracyt−1 −0.2224 (0.1622) 0.4809 (0.0786)
Incomet−1 0.1509 (0.0884) 0.4028 (0.0745)

Group 4.3 Intercept −0.3501 (0.0943) 0.3360 (0.0721)
Democracyt−1 −0.1256 (0.1544) 0.3000 (0.1428)
Incomet−1 0.3589 (0.0916) 0.3866 (0.1403)

Group 4.4 Intercept −0.3813 (0.2223) 0.5879 (0.1650) 0.2623 (0.1980)
Democracyt−1 0.4854 (0.1173) 0.3651 (0.1954) 0.0440 (0.0890)
Incomet−1 0.3407 (0.1736) 0.9277 (0.2378) −0.2385 (0.1582)

Estimates after second iteration

Group 4.1 Intercept −0.0651 (0.0219)
Democracyt−1 0.8617 (0.0268)
Incomet−1 0.1442 (0.0315)

Group 4.2 Intercept −1.1311 (0.0755) 0.1794 (0.0484)
Democracyt−1 −0.3269 (0.0947) 0.5123 (0.0779)
Incomet−1 0.2448 (0.0663) 0.4056 (0.0748)

Group 4.3 Intercept −0.3551 (0.0979) 0.2936 (0.0735)
Democracyt−1 −0.1309 (0.1579) 0.2699 (0.1479)
Incomet−1 0.3545 (0.0901) 0.4284 (0.1444)

Group 4.4 Intercept −0.3722 (0.1943) 0.5531 (0.1375) 0.3421 (0.1818)
Democracyt−1 0.4718 (0.0957) 0.3758 (0.1951) 0.0640 (0.0871)
Incomet−1 0.3574 (0.1650) 0.8917 (0.2323) −0.1912 (0.1568)
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Figure S.1: Estimates of group membership (G = 6)

Group 6.1
Group 6.2

Group 6.3
Group 6.4

Group 6.5
Group 6.6

S.2.2 Democracy and income: Analysis under G = 6

In this section, we analyze the democracy–income relationship using GAGFL and discuss

the results when we set G = 6. In Section 7.1 of the main text, we examines the same

application but mainly discuss the results under four groups. Setting G = 4 corresponds

to the minimum value of BIC, and it leads to a large group containing both democratic

and autocratic countries. Given the short time dimension of the data set, the number of

groups might be incorrectly estimated and we examine how our results are sensitive to a

different choice of the number of groups here. Specifically, we set G = 6 which corresponds

the second least value of the BIC. We are particularly interested in how the clustering

results would be affected if we allow for more heterogeneity by specifying a larger G. The

data set and the model are explained in Section 8.1.

Figure S.1 illustrates the clustering results and Table S.14 summarizes the estimated
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Table S.14: Income and democracy: Coefficient and regime estimates of G = 6

Regime 1 2 3 4 5 6 7

Group 6.1 Intercept 0.0155 (0.0394)
Democracyt−1 0.8852 (0.0417)
Incomet−1 0.0651 (0.0283)

Group 6.2 Intercept −0.7344 (0.0606)
Democracyt−1 0.2231 (0.0631)
Incomet−1 0.1794 (0.0406)

Group 6.3 Intercept 0.3371 (0.1015)
Democracyt−1 0.0446 (0.1453)
Incomet−1 0.4971 (0.0944)

Group 6.4 Intercept −0.9990 (0.1011) 0.2142 (0.0594)
Democracyt−1 −0.3562 (0.0938) 0.4964 (0.0927)
Incomet−1 0.2428 (0.0735) 0.3169 (0.0776)

Group 6.5 Intercept −0.5105 (0.1029) 0.3600 (0.0512) 0.4103 (0.1126)
Democracyt−1 −0.4437 (0.1324) −0.0379 (0.1881) 0.0265 (0.1889)
Incomet−1 0.4635 (0.0816) 1.0259 (0.1598) 0.3670 (0.1304)

Group 6.6 Intercept −0.5148 (0.1527) 0.3940 (0.0761)
Democracyt−1 0.4324 (0.1320) 0.6841 (0.0875)
Incomet−1 0.3296 (0.0954) 0.1085 (0.1046)

values of coefficients and their standard errors. We denote the six groups in this case as

Groups 6.1–6.6. As discussed in the main text, the group with stable coefficients under

G = 4 (i.e., Group 4.1) is further divided when we set G = 6. Recall that Group 4.1

contains countries with different levels of democracy. When we set G = 6, poorly and

highly democratic countries are sharply separated into three groups, which we label as

Groups 6.1–6.3. For example, US and China belong to different groups. Nonetheless, their

slope coefficients are all stable over time.

Countries in Group 6.1 are all highly democratic with stable political system, except

for Jordan, Morocco, and Paraguay with moderate but still persistent democracy level.

The persistency in democracy is demonstrated by a high value of the coefficient on the

lagged dependent variable. The income level in this group varies. Most of countries are

characterized by high income, such as a number of European countries, US, and Canada,

while there are a few countries with high democracy but moderately low income, for exam-

ple, Colombia, Costa Rica, India, Jamaica, and Malaysia. Hence, the association between

income and democracy of this group is not strong.

Group 6.2 is also characterized by stable slope coefficients, but with much lower average

level of democracy (estimated intercept being –0.7344). This group contains countries with
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low democracy level, such as a large share of African countries, Middle Eastern countries,

and several autocratic Asian countries. These countries are generally poor. They have a

higher income effect than Group 6.1, but the effect is still small.

Group 6.3 contains eleven countries. All of them are democratic but their Freedom

House score fluctuates over time to different extents. We also observe that the income

level of countries in this group varies jointly with their democracy level, such that the

relation between income and democracy remains stable. These features are well embodied

in the weak persistence of democracy and strong income effect.

It may be argued that Groups 6.4-6.6 here correspond to Groups 4.2-4.4, respectively.

Particularly, 91% (10 out of 11) of the countries in Group 6.4 correspond to Group 4.2,

and they are characterized by one structural break in the early part of the period. Their

democracy level increases and becomes more stable after the break. Group 6.5 contains

almost identical members as Group 4.3, whose democracy transition happens in the later

part of the period. The detection of two breaks (one in the middle and one in the late),

in contrast to one break found under G = 4, is possibly due to fluctuation of democracy

and income during transition. Group 6.6 consists of 12 countries, and is largely similar to

Group 4.4, with 8 countries in common. This group experiences one structural break in

the middle of the period, and it differs from Group 6.5 in that the dynamic persistence of

democracy is positive before the break and becomes even stronger after the break, while

Group 6.5 has a negative dynamic effect in the first part of the period. Besides, the income

effect is much weaker after the break in Group 6.6 than in Group 6.5.

We conclude that our main results hold under a different specification of G qualitatively.

There exists a substantial degree of heterogeneity in the income effect on democracy. More-

over, there are heterogeneous structural breaks. There are countries who did not experience

structural breaks, while there are also countries that experienced breaks in the effect. Even

among those countries that exhibit breaks, the timings and the magnitudes are markedly

different.

S.2.3 Specification with fully time varying group fixed effects

We consider the setup where αgi,t is not penalized, and thus varies at each time period. In

this case, the break detection is purely based on slope coefficients. The estimates can be

22



obtained by minimizing the following objective function:

argmin
(α,β,γ)

1

NT

N󰁛

i=1

T󰁛

t=1

(yit − αgi,t − x′
itβgi,t)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 , (S.1)

where yit = democracyit and xit = (democracyi,t−1, incomei,t−1). Note that this specifica-

tion is a special case of those considered in Section S.6 where the theoretical properties of

the estimator are investigated.

Table S.15: Income and democracy: Fully time varying intercept and G = 2
Regime 1 2 3 4 5 6 7

Group 1 Intercept −0.2958 −0.0707 0.1080 0.0081 0.0144 0.0203 0.0154
(0.0619) (0.0304) (0.0442) (0.0307) (0.0389) (0.0744) (0.0398)

Democracyt−1 0.8633
(0.0251)

Incomet−1 0.1046
(0.0315)

Group 2 Intercept −0.3121 −0.4141 −0.2189 −0.0661 0.2133 0.2163 0.4719
(0.1490) (0.1307) (0.1336) (0.1218) (0.0860) (0.1271) (0.0705)

Democracyt−1 −0.0025 0.3875
(0.1062) (0.0930)

Incomet−1 0.4192 0.3083
(0.0726) (0.0825)

When we allow the intercept to be fully time varying, the BIC selects two groups.

Table S.15 presents the GAGFL estimates of fully time varying intercept and slope co-

efficients for the two groups. Group 1 is characterized by stable slope coefficients, and

the lag and income effects are both positive and strong. The average level of democracy

generally improves over the years, but the estimates after the 3rd period are all insignifi-

cant. This suggests that, on one hand, fully time varying estimates are rather inefficient

due to limited observations, and on the other hand, there may still exist heterogeneity

in this group, at least on the average level of democracy. Group 2 exhibits a structural

break in slope coefficients in the later period of the sample. The persistence of democracy

becomes stronger while the income effect becomes weaker after the break. The average

level of democracy also improves over the years as in Group 1, but to a larger extent and

the estimates are more significant. Table S.17 displays the group membership estimates in

this case. Group 1 contains stable countries and a few transitory countries that becomes

democratic at different stages, e.g. Benin, Bolivia, Costa Rica, but their income effects

are all highly persistent. Group 2 contains late transition countries whose democracy level
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and income effect both change remarkably after the transition.

Table S.16: Income and democracy: Fully time varying intercepts with G = 4
Regime 1 2 3 4 5 6 7

Group 1 Intercept −0.2841 −0.0793 0.0697 −0.0137 −0.0354 −0.1225 −0.0202
(0.0628) (0.0292) (0.0320) (0.0326) (0.0398) (0.0489) (0.0396)

Democracyt−1 0.8792
(0.0274)

Incomet−1 0.1259
(0.0310)

Group 2 Intercept −0.6387 −0.6561 0.1413 0.0994 0.0679 0.0303 0.4804
(0.1646) (0.1708) (0.1635) (0.1308) (0.0859) (0.1240) (0.1041)

Democracyt−1 0.0042 0.6025
(0.1345) (0.0920)

Incomet−1 0.2996 0.2413
(0.0859) (0.0699)

Group 3 Intercept −0.3768 −0.6127 −0.2270 −0.3395 0.3574 0.2572 0.5417
(0.2505) (0.1084) (0.0786) (0.1812) (0.1619) (0.1409) (0.1456)

Democracyt−1 0.9002 −0.8079 0.2096 0.0730
(0.3239) (0.1797) (0.1271) (0.1226)

Incomet−1 0.1254 1.0632 −0.9570 0.6535
(0.3788) (0.2164) (0.1159) (0.1448)

Group 4 Intercept 0.2513 −0.1083 −0.4886 0.1054 0.3242 −0.1536 0.2243
(0.2568) (0.1879) (0.1701) (0.1907) (0.1081) (0.1568) (0.1291)

Democracyt−1 0.4868 0.3364 0.5674 0.4604 1.4734
(0.1602) (0.1798) (0.1312) (0.1122) (0.2865)

Incomet−1 1.0548 0.4953 0.5050 −0.9039 0.6153
(0.1930) (0.2147) (0.2140) (0.1733) (0.1529)

Since the model with two groups may not fully capture the heterogeneity, we also

estimate the model with four groups, but allowing the intercepts to be fully time varying.

The coefficient estimates are presented in Table S.16, and the estimated group memberships

are provided in Table S.17. The estimated group structure is largely similar to that in

the case in which the intercepts are also penalized. The estimated group membership

in this case is even closer to that of initial estimates under G = 4 with only one country

switching. Again, Group 1 is featured by its stability of slope coefficients and the intercept.

Compared to the case of fully time varying intercepts with G = 2, the estimated intercepts

under G = 4 are more significant, confirming that heterogeneity is better controlled by

allowing more groups. Group 2 contains countries of early transition, whose average level

of democracy improves remarkably in period 2, and the lag and income effects exhibit a

break in period 3. The slope coefficients of Group 3 are quite volatile in the first three

periods, but become stable afterwards. The time path of the average level of democracy
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Table S.17: Estimated group memberships when intercepts are fully time varying

G = 2 G = 4 G = 2 G = 4 G = 2 G = 4
Algeria 1 1 Ghana 2 3 Nigeria 2 3
Argentina 2 3 Greece 2 2 Norway 1 1
Australia 1 1 Guatemala 2 4 Panama 2 2
Austria 1 1 Guinea 1 1 Paraguay 1 1
Belgium 1 1 Honduras 2 2 Peru 2 2
Benin 1 4 Iceland 1 1 Philippines 2 4
Bolivia 2 4 India 1 1 Portugal 1 2
Brazil 2 3 Indonesia 2 2 Romania 1 1
Burkina Faso 2 2 Iran 1 1 Rwanda 1 1
Burundi 1 1 Ireland 1 1 Sierra Leone 2 2
Cameroon 1 1 Israel 1 1 Singapore 1 1
Canada 1 1 Italy 1 1 South Africa 2 3
Central African Rep. 1 4 Jamaica 1 1 Spain 2 2
Chad 1 1 Japan 1 1 Sri Lanka 1 1
Chile 2 3 Jordan 1 1 Sweden 1 1
China 1 1 Kenya 1 1 Switzerland 1 1
Colombia 1 1 Korea, Rep. 2 3 Syrian Arab Rep. 1 1
Congo, Dem. Rep. 1 1 Luxembourg 1 1 Taiwan 1 2
Congo, Rep. 1 4 Madagascar 2 4 Tanzania 2 2
Costa Rica 1 1 Malawi 2 4 Thailand 2 3
Cote d’Ivoire 1 1 Malaysia 1 1 Togo 1 1
Cyprus 1 1 Mali 1 4 Trinidad & Tobago 1 1
Denmark 1 1 Mauritania 1 1 Tunisia 1 1
Dominican Rep. 1 2 Mexico 2 2 Turkey 2 4
Ecuador 2 2 Morocco 1 1 Uganda 2 2
Egypt, Arab Rep. 1 1 Nepal 1 2 United Kingdom 1 1
El Salvador 2 4 Netherlands 1 1 United States 1 1
Finland 1 1 New Zealand 1 1 Uruguay 2 3
France 1 1 Nicaragua 2 3 Venezuela, RB 1 1
Gabon 1 1 Niger 1 4 Zambia 2 4

25



labels Group 3 as late transition countries, in line with the results when the intercept is

penalized. Finally, the income effect and democracy level of Group 4 fluctuate in the later

periods of the sample, and the estimated intercept is insignificant in most periods.

S.2.4 Confidence sets for group membership

In this section, we present confidence sets for group membership under the specification

presented in the main text. We apply the methods developed by Dzemski and Okui (2018).

We use their QLR procedure and compute both unitwise confidence sets and joint confi-

dence sets. The confidence levels for unitwise confidence sets and joint confidence sets are

90% and 67%, respectively.

Table S.18 presents unitwise confidence sets. It indicates that if we look at each country

separately, its group membership is reasonably precisely estimated. There are 25 countries

whose confidence sets are singleton and 48 countries have only two entries in their sets.

There is no singleton set whose element is Group 4.4, which indicates that countries which

are classified to Group 4 may be hard to be classified. When sets have multiple elements,

they tend to have Group 4.1 and Group 4.2 also appears in sets frequently. Groups 4.1

and 4.2 might have more countries. An interesting result we have observed in our main

analysis is that both low and high democracy countries are included in Group 4.1. We

observe that Group 4.1 countries whose confidence sets are singleton include both low and

high democracy countries. This suggests that that result is unlikely to be an artifact of

statistical errors of group assignment.

Table S.19 presents the joint confidence set. The joint confidence set is large. This

problem is likely to be caused by short time series of the data. It cautions us to make

a decisive argument involving the entire set of countries based on the estimated group

membership structure.

S.3 Understanding cross-country savings differences

This section presents a second application that studies the determinants of the cross-

country differences in savings behavior. The literature on international differences in sav-

ings can be dated back to Feldstein (1980). As acknowledged by several recent studies,

countries at different economic and social development stages are characterized by dis-

parate institutions, customs, and social norms, which further causes the savings rate to

respond differently to its various determinants, especially in the short-run (see, for exam-
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Table S.18: Unitwise confidence sets for group memberships

CS CS CS
Algeria 1 Ghana 3 & 4 Nigeria 2 & 3
Argentina 2 & 3 & 4 Greece 1 & 2 Norway 1 & 2
Australia 1 & 2 Guatemala 1 & 3 Panama 2 & 3
Austria 1 & 2 Guinea 1 Paraguay 1
Belgium 1 & 2 Honduras 2 & 4 Peru 2 & 3
Benin 1 & 4 Iceland 1 & 2 Philippines 2 & 4
Bolivia 1 & 4 India 1 & 2 Portugal 1 & 2 & 3
Brazil 3 Indonesia 1 & 2 & 3 Romania 1 & 2 & 4
Burkina Faso 3 Iran 1 Rwanda 1 & 2
Burundi 2 Ireland 1 & 2 Sierra Leone 1 & 2 & 3 & 4
Cameroon 1 Israel 1 & 2 Singapore 1
Canada 1 & 2 Italy 1 & 2 South Africa 1 & 3 & 4
Central African Rep. 1 & 4 Jamaica 1 & 2 & 4 Spain 1 & 2 & 3
Chad 1 Japan 1 & 2 Sri Lanka 1 & 2
Chile 1 & 2 & 3 & 4 Jordan 1 Sweden 1 & 2
China 1 & 2 Kenya 1 & 2 Switzerland 1
Colombia 1 & 2 Korea, Rep. 3 Syrian Arab Rep. 1
Congo, Dem. Rep. 1 & 2 Luxembourg 1 & 2 Taiwan 2
Congo, Rep. 2 Madagascar 3 & 4 Tanzania 3
Costa Rica 1 & 2 Malawi 2 & 4 Thailand 2 & 3 & 4
Cote d’Ivoire 1 Malaysia 1 & 2 Togo 2
Cyprus 1 & 2 Mali 1 & 2 & 4 Trinidad & Tobago 1 & 2
Denmark 1 & 2 Mauritania 1 Tunisia 1
Dominican Rep. 1 & 2 & 3 & 4 Mexico 2 & 3 Turkey 2 & 4
Ecuador 2 & 3 & 4 Morocco 1 Uganda 1 & 2 & 3
Egypt, Arab Rep. 1 & 2 Nepal 1 & 2 & 3 United Kingdom 1 & 2
El Salvador 1 & 2 & 3 & 4 Netherlands 1 & 2 United States 1
Finland 1 New Zealand 1 & 2 Uruguay 3 & 4
France 1 & 2 Nicaragua 1 & 3 Venezuela, RB 1 & 2
Gabon 1 Niger 1 & 4 Zambia 1 & 2 & 3
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Table S.19: Joint confidence set for group memberships

CS CS CS
Algeria 1 & 2 & 4 Ghana 1 & 2 & 3 & 4 Nigeria 1 & 2 & 3 & 4
Argentina 1 & 2 & 3 & 4 Greece 1 & 2 & 3 Norway 1 & 2 & 3
Australia 1 & 2 & 3 Guatemala 1 & 2 & 3 & 4 Panama 1 & 2 & 3 & 4
Austria 1 & 2 & 3 Guinea 1 & 2 & 4 Paraguay 1 & 2 & 3 & 4
Belgium 1 & 2 & 3 Honduras 1 & 2 & 3 & 4 Peru 1 & 2 & 3 & 4
Benin 1 & 2 & 4 Iceland 1 & 2 & 3 Philippines 1 & 2 & 3 & 4
Bolivia 1 & 2 & 3 & 4 India 1 & 2 & 3 & 4 Portugal 1 & 2 & 3 & 4
Brazil 1 & 2 & 3 & 4 Indonesia 1 & 2 & 3 & 4 Romania 1 & 2 & 3 & 4
Burkina Faso 1 & 2 & 3 & 4 Iran 1 & 3 & 4 Rwanda 1 & 2 & 4
Burundi 1 & 2 & 4 Ireland 1 & 2 & 3 Sierra Leone 1 & 2 & 3 & 4
Cameroon 1 & 4 Israel 1 & 2 & 3 & 4 Singapore 1 & 2 & 3 & 4
Canada 1 & 2 & 3 Italy 1 & 2 & 3 South Africa 1 & 2 & 3 & 4
Central African Rep. 1 & 2 & 3 & 4 Jamaica 1 & 2 & 3 & 4 Spain 1 & 2 & 3 & 4
Chad 1 & 2 & 4 Japan 1 & 2 & 3 Sri Lanka 1 & 2 & 3 & 4
Chile 1 & 2 & 3 & 4 Jordan 1 & 2 & 4 Sweden 1 & 2 & 3 & 4
China 1 & 2 & 4 Kenya 1 & 2 & 3 & 4 Switzerland 1 & 2 & 3 & 4
Colombia 1 & 2 & 3 Korea, Rep. 1 & 2 & 3 & 4 Syrian Arab Rep. 1 & 2 & 3 & 4
Congo, Dem. Rep. 1 & 2 & 4 Luxembourg 1 & 2 & 3 & 4 Taiwan 1 & 2 & 3 & 4
Congo, Rep. 1 & 2 & 3 & 4 Madagascar 1 & 2 & 3 & 4 Tanzania 1 & 2 & 3 & 4
Costa Rica 1 & 2 & 3 & 4 Malawi 1 & 2 & 4 Thailand 1 & 2 & 3 & 4
Cote d’Ivoire 1 & 4 Malaysia 1 & 2 Togo 1 & 2 & 3 & 4
Cyprus 1 & 2 & 3 & 4 Mali 1 & 2 & 4 Trinidad & Tobago 1 & 2 & 3
Denmark 1 & 2 & 3 Mauritania 1 & 2 & 4 Tunisia 1 & 4
Dominican Rep. 1 & 2 & 3 & 4 Mexico 1 & 2 & 3 & 4 Turkey 1 & 2 & 3 & 4
Ecuador 1 & 2 & 3 & 4 Morocco 1 & 2 & 3 Uganda 1 & 2 & 3 & 4
Egypt, Arab Rep. 1 & 2 & 3 & 4 Nepal 1 & 2 & 3 & 4 United Kingdom 1 & 2 & 3
El Salvador 1 & 2 & 3 & 4 Netherlands 1 & 2 & 3 United States 1 & 2 & 3 & 4
Finland 1 & 2 & 3 & 4 New Zealand 1 & 2 & 3 Uruguay 1 & 2 & 3 & 4
France 1 & 2 & 3 Nicaragua 1 & 2 & 3 & 4 Venezuela, RB 1 & 2 & 3 & 4
Gabon 1 & 2 & 4 Niger 1 & 2 & 4 Zambia 1 & 2 & 3 & 4
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ple, Pesaran et al., 2000; Loayza et al., 2000). In addition, institutional and social norms

are likely to change over time, leading to time varying effects of the determinants of sav-

ings behavior, and this time varying feature is country-specific. Hence, it is important to

incorporate the heterogeneous time varying behavior when studying the determinants of

cross-country savings differences.

Thus motivated, we examine the effects of typical savings rate determinants by allowing

them to be heterogeneous across countries and time varying. The dependent variable is

the ratio of savings to GDP (S). Following Su et al. (2016) we consider the following

determinants: the CPI-based inflation rate (I), real interest rate (R), and per capita GDP

growth rate (G). We consider the specification with additive time-invariant country-specific

effects:

Sit = µi + θ1,gi,tIit + θ2,gi,tRit + θ3,gi,tGit + εit.

We estimate this model by applying GAGFL to the first-differenced data. We use the

same data set as Su et al. (2016) that contains a balanced yearly panel of 56 countries

over the time span of 1995–2010. Here, we range λ in the interval of [0.01, 20], and use

the same information criterion as in the simulation exercises and the first application to

determine the tuning parameter. The number of groups is selected by the BIC as mentioned

above. The minimum BIC corresponds to three groups, which is different from two groups

selected by Su et al. (2016) based on C-Lasso estimation. The group composition produced

by the two methods also deviates from each other to some extent. The difference mainly

stems from allowing structural breaks in the coefficients and forming the grouping based

on both the magnitude of the coefficient estimates and the breakpoints. In fact, two of our

estimated three groups are characterized by stable slope coefficients, and they resemble

the two groups reported by Su et al. (2016), while the extra third group is featured by

one structural break. We find that our estimated clustering is to some extent related to

the economic status of the countries. For example, Group 1 covers most of the developing

countries, while Group 2 is mainly composed of countries with good economic performance.

Table S.20 displays the coefficient and structural break estimates of the three groups.

Group 1 contains 26 countries, which are mainly emerging economies, i.e. most Southeast

Asian countries and a large number of African and Latin American countries. Countries

in this group are characterized by stable estimated coefficients, although their significance

varies. In particular, inflation and interest rate are significantly and negatively associated

with savings rate for this group, while the relationship between GDP growth rate and

savings rate is ambiguous.
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Table S.20: GAGFL estimates of determinants of savings rate

Regime 1–2 3–15

Group 1 Inflation −0.0437 (0.0112)
Interest rate −0.1130 (0.0286)
GDP growth −0.0118 (0.0178)

Group 2 Inflation 0.1580 (0.0468)
Interest rate 0.0969 (0.0201)
GDP growth 0.1396 (0.0142)

Group 3 Inflation −2.1285 (0.3821) −0.2664 (0.0816)
Interest rate 0.7922 (0.1120) −0.3816 (0.0555)
GDP growth −0.1720 (0.2265) 0.0890 (0.0218)

Group 2 is also characterized by stable slope coefficient estimates, but the effects of

the determinants are in sharp contrast to those of Group 1. In particular, the effects of

inflation and interest rate are strong and positive, and higher income growth is significantly

associated with a higher savings rate. The opposite effect of inflation and interest rate in

two groups is consistent with Su et al. (2016), and they also found that the significance of

income growth varies across the two groups. This group contains 24 countries, and is mainly

composed of developed countries, such as Canada, US, and West European countries. It

also includes a few rapidly growing countries, e.g. China and Armenia.

Group 3 contains six countries, namely Bangladesh, Indonesia, Israel, Japan, Mongolia,

and Sri Lanka. This group is featured by one structural break at the beginning of the sample

period, namely 1997. The association between inflation and savings rate is significantly

negative in both regimes, but the size is much weaker after the break, from −2.1285 to

−0.2664. The interest rate has a positive correlation with the savings rate before the

break, but switches to negative after the break. Income growth is insignificantly related

to the savings rate in the first regime, but the association is much stronger and becomes

positive in the second regime. Further examination of these countries reveals that they all

experienced a big drop in their income growth and savings rate at the breakpoint of 1997.

Before the break, their savings rate moves closely with inflation and interest rate, while

their income growth is relatively volatile. Nevertheless, the co-movement between income

growth and savings rate is strengthened greatly after the break, while the association with

the other two determinants is weakened. Interestingly, we note that this group contains

mostly Asian countries except Israel, which were all severely affected by the Asia financial

crisis in 1997. The crisis year corresponds to our estimated breakpoint precisely, and it

thus well explains the sharp change in their economic performance and savings rate.
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This application again confirms the importance of incorporating heterogeneous struc-

tural breaks. On one hand, the impact of a financial crisis and the time varying pattern of

slope coefficients cannot be captured by standard classification approaches. Classification

that ignores structural breaks tends to merge Groups 1 and 3. On the other hand, it is

clear that not all countries are affected by the crisis, and thus assuming that the shock

influences all individual units is not appropriate.

S.4 Proofs omitted in the main text

In this section, we present the proofs omitted in the main text. For ease of reference, we

restate the assumptions. We also provide the statements of the lemmas before we present

their proofs. We present these results in the supplement because they are similar to those

in Bonhomme and Manresa (2015) or in Qian and Su (2016). Note that their results do

not cover our case, and that the results presented here are new.

S.4.1 Assumptions

We first present the assumptions used in the lemmas. The explanations of these assump-

tions are given in the main text.

Assumption 1.

1. B is compact.

2. E(󰂃itxit) = 0 for all i and t.

3. There exists M > 0 such that for any N and T ,

1

N

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=1

E (󰂃it󰂃jtx
′
itxjt)

󰀏󰀏󰀏󰀏󰀏 < M

4. There exists M > 0 such that for any N and T ,

󰀏󰀏󰀏󰀏󰀏
1

N2

N󰁛

i=1

N󰁛

j=1

1

T

T󰁛

t=1

T󰁛

s=1

Cov (󰂃it󰂃jtx
′
itxjt, 󰂃is󰂃jsx

′
isxjs)

󰀏󰀏󰀏󰀏󰀏 < M

5. There exists M > 0 such that for any N and T , (NT )−1
󰁓N

i=1

󰁓T
t=1 E

󰀃
󰀂xit󰀂4

󰀄
< M .
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Assumption 2.

1. Let

M(γ, g, g̃) =
1

N

N󰁛

i=1

1
󰀋
g0i = g

󰀌
1 {gi = g̃}

󰀳

󰁅󰁅󰁅󰁅󰁃

xi1x
′
i1 0 . . . 0

0 xi2x
′
i2 . . . . . .

. . . . . . . . . 0

0 . . . 0 xiTx
′
iT

󰀴

󰁆󰁆󰁆󰁆󰁄
.

Let ρ̂(γ, g, g̃) be the minimum eigenvalue of M(γ, g, g̃). There exist ρ̂ and ρ > 0 such

that ρ̂ →p ρ and ∀g,

min
γ∈GN

max
g̃∈G

ρ̂(γ, g, g̃) > ρ̂.

2. Let

Dgg̃i =
1

T

T󰁛

t=1

󰀃
x′
it(β

0
g,t − β0

g̃,t)
󰀄2

.

For all g ∕= g̃, there exists a cg,g̃ > 0 such that

plim
N,T→∞

1

N

N󰁛

i=1

Dgg̃i > cg,g̃

and for all i,

plim
T→∞

Dgg̃i > cg,g̃.

Assumption 3.

1. There exists a constant M∗
ex such that as N, T → ∞, for all δ > 0,

sup
1≤i≤N

Pr

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2 ≥ M∗
ex

󰀤
= O(T−δ).
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2. There exists a constant M∗
x such that as N, T → ∞, for all δ > 0,

sup
1≤i≤N

Pr

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4 ≥ M∗
x

󰀤
= O(T−δ).

3. There exist constants a > 0 and d1 > 0 and a sequence α[t] < exp(−atd1) such

that, for all i = 1, . . . , N and (g, g̃) ∈ G2 such that g ∕= g̃, {x′
it(β

0
g̃,t − β0

g,t)}t,
{x′

it(β
0
g̃,t − β0

g,t)󰂃it}t are strongly mixing process with mixing coefficients α[t]. More-

over, E(x′
it(β

0
g̃,t − β0

g,t)󰂃it) = 0.

4. There exist constants bx > 0, be > 0, d2x > 0 and d2e such that Pr(|x′
it(β

0
g̃,t − β0

g,t)| >
m) ≤ exp(1 − (m/bx))

d2x and Pr(|x′
it(β

0
g̃,t − β0

g,t)󰂃it| > m) ≤ exp(1 − (m/be))
d2e, for

any i, t and m > 0.

Assumption 4.

1.
√
NTλ

󰀓󰁓
g∈G m0

g

󰀔
J−κ
min = Op(1).

2.
√
NTλN−κ/2 →p ∞.

3.
√
NJmin → ∞.

Assumption 5. Suppose that Σx and Ω are well-defined, their minimum eigenvalues are

bounded away from zero and their maximum eigenvalues are bounded uniformly over T .

Ng/N → πg > 0 for any g ∈ G. Let

dg,NT =
1󰁳
Ng

󰁛

g0i =g

󰀳

󰁅󰁃
T 2
g,1−1󰁛

t=1

xit󰂃it/
󰁳

Ig,1, . . . ,

T󰁛

t=T 0
g,m0

g

xit󰂃it/
󰁴

Ig,m0
g+1

󰀴

󰁆󰁄

′

.

For a l×
󰁓G

g=1(m
0
g+1)k matrix D, where l does not depend on T and limT→∞ DΩD′ exists

and is positive definite, D(d′1,NT , . . . , d
′
G,NT )

′ →d N(0, limT→∞ DΩD′).

Assumption 6. N
󰁓G

g=1(m
0
g)λ

2I−1
minJ

−2κ
min = op(1).

S.4.2 Proofs for Section A.1

We present the proofs of the lemmas in Section A.1 of the main text. We also provide the

statement of each lemma before the proof for ease of reference.
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Recall that

Q̇NT (β, γ) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβgi,t)

2

and

Q̃NT (β, γ) =
1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β

0
g0i ,t

− βgi,t))
2 +

1

NT

N󰁛

i=1

T󰁛

t=1

󰂃2it.

The Cauchy–Schwarz inequality is abbreviated as the CS inequality. M denotes a

generic universal constant.

Lemma 3. Suppose that Assumptions 1.1–4 hold.

sup
(β,γ)∈BGT×ΓG

󰀏󰀏󰀏Q̇NT (β, γ)− Q̃NT (β, γ)
󰀏󰀏󰀏 = op(1).

Proof. We observe that

Q̇NT (β, γ)− Q̃NT (β, γ) =
2

NT

N󰁛

i=1

T󰁛

t=1

󰂃itx
′
itβ

0
g0i ,t

− 2

NT

N󰁛

i=1

T󰁛

t=1

󰂃itx
′
itβgi,t.

We have

1

NT

N󰁛

i=1

T󰁛

t=1

󰂃itx
′
itβgi,t =

G󰁛

g=1

1

NT
1{gi = g}

N󰁛

i=1

T󰁛

t=1

󰂃itx
′
itβg,t

=
G󰁛

g=1

1

T

T󰁛

t=1

β′
g,t

1

N

N󰁛

i=1

1{gi = g}󰂃itxit.

For any g ∈ G, the CS inequality implies that

󰀣
1

T

T󰁛

t=1

β′
g,t

1

N

N󰁛

i=1

1{gi = g}󰂃itxit

󰀤2

≤
󰀣

1

T

T󰁛

t=1

󰀐󰀐β′
g,t

󰀐󰀐2

󰀤
×

󰀳

󰁃 1

T

T󰁛

t=1

󰀐󰀐󰀐󰀐󰀐
1

N

N󰁛

i=1

1{gi = g}󰂃itxit

󰀐󰀐󰀐󰀐󰀐

2
󰀴

󰁄 .
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Assumption 1.1 implies that

1

T

T󰁛

t=1

󰀐󰀐β′
g,t

󰀐󰀐2
< M.

We also have

1

T

T󰁛

t=1

󰀐󰀐󰀐󰀐󰀐
1

N

N󰁛

i=1

1{gi = g}󰂃itxit

󰀐󰀐󰀐󰀐󰀐
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=
1
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1

N2
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N󰁛
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=
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N󰁛

j=1
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T
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′
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i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=1

󰂃it󰂃jtx
′
itxjt

󰀏󰀏󰀏󰀏󰀏

≤ 1

N2

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=1

E (󰂃it󰂃jtx
′
itxjt)

󰀏󰀏󰀏󰀏󰀏

+
1

N2

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=1

(󰂃it󰂃jtx
′
itxjt − E (󰂃it󰂃jtx

′
itxjt))

󰀏󰀏󰀏󰀏󰀏

=op(1),

where the last equality follows from Assumptions 1.3 and 1.4. Thus, we have

1

NT

N󰁛

i=1

T󰁛

t=1

󰂃itx
′
itβgi,t = op(1)

uniformly over BGT × ΓG. Similarly we have

1

NT

N󰁛

i=1

T󰁛

t=1

󰂃itx
′
itβ

0
g0i ,t

= op(1).

Therefore, we have the desired result.
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We consider the following HD in BGT such that

dH(β
a, βb) = max

󰀫
max
g∈G

󰀣
min
g̃∈G

1

T

T󰁛

t=1

󰀐󰀐βa
g̃,t − βb

g,t

󰀐󰀐2

󰀤
,max

g̃∈G

󰀣
min
g∈G

1

T

T󰁛

t=1

󰀐󰀐βa
g̃,t − βb

g,t

󰀐󰀐2

󰀤󰀬

Lemma 4. Suppose that Assumptions 1.1–4 and 2 hold.

dH(β̇, β
0) = op(1).

Proof. From Lemma 3, we have

Q̃(β̇, γ̇) = Q̇(β̇, γ̇) + op(1) ≤ Q̇(β0, γ0) + op(1) = Q̃(β0, γ0) + op(1).

Because Q̃(β, γ) is minimized at β = β0 and γ = γ0, we have

Q̃(β̇, γ̇)− Q̃(β0, γ0) = op(1).

On the other hand, we have

Q̃(β, γ)− Q̃(β0, γ0) =
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󰀄′
M(γ, g, g̃)

󰀃
β0
g − βg̃

󰀄

≥
G󰁛

g=1

G󰁛

g̃=1

ρ̂(γ, g, g̃)

󰀣
1

T

T󰁛

t=1

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤

≥
G󰁛

g=1

max
g̃∈G

ρ̂(γ, g, g̃)min
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤

≥
G󰁛

g=1

ρ̂min
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤

≥ρ̂max
g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤󰀤
.

Note that ρ̂ is asymptotically bounded away from zero by Assumption 2.1.
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Therefore we have

max
g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1). (S.2)

Let

σ(g) = argmin
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤
.

Then we have for g̃ ∕= g,

󰀣
1

NT

N󰁛

i=1

T󰁛

t=1

󰀓
x′
it(β̇σ(g),t − β̇σ(g̃),t)

󰀔2
󰀤1/2

≥
󰀣

1

NT

N󰁛

i=1

T󰁛

t=1

󰀃
x′
it(β

0
g,t − β0

g̃,t)
󰀄2
󰀤1/2

−
󰀣

1

NT

N󰁛

i=1

T󰁛

t=1

󰀓
x′
it(β̇

0
σ(g),t − β0

g,t)
󰀔2
󰀤1/2

−
󰀣

1

NT

N󰁛

i=1

T󰁛

t=1

󰀓
x′
it(β̇σ(g̃),t − β0

g̃,t)
󰀔2
󰀤1/2

.

Assumption 2.2 states that the first term on the right hand side of the inequality is bounded

away from zero. Equation (S.2) implies that the second and third terms are op(1). There-

fore, we have σ(g) ∕= σ(g̃) with probability approaching one, which implies that with

probability approaching one σ is bijective and has the inverse which is denoted as σ−1.

Thus, we have

min
g∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤

≥
󰀣

1

T

T󰁛

t=1

󰀐󰀐󰀐β0
σ−1(g̃),t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤

=min
h∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
σ−1(g̃),t − β̇h,t

󰀐󰀐󰀐
2
󰀤

= op(1),

where the last equality follows from (S.2). Therefore we have

max
g̃∈G

󰀣
min
g∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1).

We thus have the desired result.
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The proof of Lemma 4 shows that there exists a permutation σ such that

1

T

T󰁛

t=1

󰀐󰀐󰀐β0
σ(g),t − β̇g,t

󰀐󰀐󰀐
2

= op(1).

We obtain σ(g) = g by relabeling.

Define

Nη =

󰀫
β ∈ BGT :

1

T

T󰁛

t=1

󰀐󰀐β0
g,t − βg,t

󰀐󰀐2
< η, ∀g ∈ G

󰀬
.

Let

ĝi(β) = argmin
g∈G

T󰁛

t=1

(yit − x′
itβg,t)

2. (S.3)

Lemma 5. Suppose that Assumptions 2.2 and 3 are satisfied. For η > 0 small enough, we

have, ∀δ > 0,

sup
β∈Nη

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
= op(T

−δ).

Proof. For any g ∈ G, we have

1 {ĝi(β) = g} ≤ 1

󰀫
T󰁛

t=1

(yit − x′
itβg,t)

2 ≤
T󰁛

t=1

(yit − x′
itβg0i ,t

)2

󰀬
.

Thus, we have

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
=

G󰁛

g=1

1

N

N󰁛

i=1

1
󰀋
g0i ∕= g

󰀌
1 {ĝi(β) = g}

≤
G󰁛

g=1

1

N

N󰁛

i=1

Zig(β),

where

Zig(β) = 1
󰀋
g0i ∕= g

󰀌
1

󰀫
T󰁛

t=1

(yit − x′
itβg,t)

2 ≤
T󰁛

t=1

(yit − x′
itβg0i ,t

)2

󰀬
.

38



We now bound Zig(β). We have

Zig(β)

≤1
󰀋
g0i ∕= g

󰀌

× 1

󰀫
T󰁛

t=1

x′
it(βg0i ,t

− βg,t))

󰀕
x′
itβ

0
g0i ,t

+ 󰂃it −
x′
it(βg0i ,t

+ βg,t)

2

󰀖
≤ 0

󰀬

≤ max
g̃∈G\{g}

1

󰀫
T󰁛

t=1

x′
it(βg̃,t − βg,t)

󰀕
x′
itβ

0
g̃,t + 󰂃it −

x′
it(βg̃,t + βg,t)

2

󰀖
≤ 0

󰀬
.

Let

AT =
󰀏󰀏󰀏

T󰁛

t=1

x′
it(βg̃,t − βg,t)

󰀕
x′
itβ

0
g̃,t + 󰂃it −

x′
it(βg̃,t + βg,t)

2

󰀖

−
T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)

󰀕
x′
itβ

0
g̃,t + 󰂃it −

x′
it(β

0
g̃,t + β0

g,t)

2

󰀖 󰀏󰀏󰀏.

Then we have

AT ≤

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=1

x′
it(βg̃,t − βg,t)󰂃it −

T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=1

x′
it(βg̃,t − βg,t)x

′
itβ

0
g̃,t −

T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)x
′
itβ

0
g̃,t

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=1

x′
it(βg̃,t − βg,t)

x′
it(βg̃,t + βg,t)

2
−

T󰁛

t=1

x′
it(βg̃,t − βg,t)

x′
it(β

0
g̃,t + β0

g,t)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=1

x′
it(βg̃,t − βg,t)

x′
it(β

0
g̃,t + β0

g,t)

2
−

T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)
x′
it(β

0
g̃,t + β0

g,t)

2

󰀏󰀏󰀏󰀏󰀏 .

Thus, when β ∈ Nη, the CS inequality implies that

AT ≤2T

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2
󰀤1/2

√
η + 2T

󰀣
1

T

T󰁛

t=1

(x′
itβ

0
g̃,t)

2 󰀂xit󰀂2
󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=1

(x′
it(βg̃,t − βg,t))

2 󰀂xit󰀂2
󰀤1/2

√
η + T

󰀣
1

T

T󰁛

t=1

(x′
it(β

0
g̃,t + β0

g,t))
2 󰀂xit󰀂2

󰀤1/2

√
η.
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As B is bounded, we have, for β ∈ Nη,

AT ≤ C1
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2

,

where C1 and C2 are constants that are independent of η and T .

Thus, we have

Zig(β) ≤ max
g̃∈G\{g}

1
󰁱 T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)

󰀕
x′
itβ

0
g̃,t + 󰂃it −

x′
it(β

0
g̃,t + β0

g,t)

2

󰀖

≤ C1
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2 󰁲

.

Let

Z̃ig = max
g̃∈G\{g}

1
󰁱 T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)

󰀕
x′
itβ

0
g̃,t + 󰂃it −

x′
it(β

0
g̃,t + β0

g,t)

2

󰀖

≤ C1
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2 󰁲

.

Thus, we have

sup
β∈Nη

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
≤ 1

N

G󰁛

g=1

N󰁛

i=1

Zig(β) ≤
1

N

G󰁛

g=1

N󰁛

i=1

Z̃ig.

Note that Z̃ig does not depend on β.

We now bound Pr(Z̃ig = 1). We observe

Pr(Z̃ig = 1)

≤
󰁛

g̃∈G\{g}

Pr
󰀓 T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it ≤ −1

2

T󰁛

t=1

󰀃
x′
it(β

0
g̃,t − β0

g,t)
󰀄2

+ C1
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2 󰀔

.

Let M∗ > max(M∗
ex,M

∗
x), where M∗

ex and M∗
x are defined in Assumptions 3.1 and 3.2,
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respectively. Thus, we have

Pr(Z̃ig = 1)

≤
󰁛

g̃∈G\{g}

󰁫
Pr

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2 ≥ M∗

󰀤
+ Pr

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4 ≥ M∗

󰀤

+ Pr

󰀣
1

T

T󰁛

t=1

󰀃
x′
it(β

0
g̃,t − β0

g,t)
󰀄2 ≤ cg,g̃

2

󰀤

+ Pr

󰀣
T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it ≤ −T
cg,g̃
4

+ TC3
√
η
√
M∗

󰀤󰁬
,

where C3 is a constant that is independent of η and T . Assumptions 3.1 and 3.2 give that

Pr

󰀣
1

T

T󰁛

t=1

󰀂󰂃itxit󰀂2 ≥ M∗

󰀤
+ Pr

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4 ≥ M∗

󰀤
= O(T−δ).

Under Assumptions 2.2, 3 and 4, a very similar argument to Bonhomme and Manresa

(2015, page 1176) implies that

Pr

󰀣
1

T

T󰁛

t=1

󰀃
x′
it(β

0
g̃,t − β0

g,t)
󰀄2 ≤ cg,g̃

2

󰀤
= O(T−δ).

Take η such that

η ≤
󰀕
ming̃∈G\{g} cg,g̃

8C3

√
M∗

󰀖
.

We then have

Pr

󰀣
T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it ≤ −T
cg,g̃
4

+ TC3
√
η
√
M∗

󰀤

≤Pr

󰀣
1

T

T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it ≤ −cg,g̃
8

󰀤

≤Pr

󰀣󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it

󰀏󰀏󰀏󰀏󰀏 >
cg,g̃
8

󰀤
.

Under Assumptions 3 and 4, a very similar argument to Bonhomme and Manresa (2015,
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page 1177), in particular the use of exponential inequalities in Bonhomme and Manresa

(2015, Lemma B.5), implies that

Pr

󰀣󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=1

x′
it(β

0
g̃,t − β0

g,t)󰂃it

󰀏󰀏󰀏󰀏󰀏 >
cg,g̃
8

󰀤
= O(T−δ).

We thus have

Pr(Z̃ig = 1) ≤ (G− 1)O(T−δ).

This implies that

E

󰀣
sup
β∈Nη

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
󰀤

≤ 1

N

G󰁛

g=1

N󰁛

i=1

E
󰀓
Z̃ig

󰀔

=
1

N

G󰁛

g=1

N󰁛

i=1

Pr
󰀓
Z̃ig = 1

󰀔

=G(G− 1)O(T−δ) = O(T−δ).

The Markov inequality implies the desired result.

Let

β̌ = arg min
β∈BGT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβg0i ,t

)2.

Note that β̌ is the estimator of β when the group memberships (i.e., γ0) are known. Let

Q̌(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβg0i ,t

)2.

Note that Q̌(β) = Q̇(β, γ0) and that β̌ = argminβ∈BGT Q̌(β).

Lemma 6. Suppose that Assumptions 1 and 2.1 hold. Suppose that Ng/N → πg > 0 for

any g ∈ G. Then it follows that for all g and t,

β̌g,t − β0
g,t = Op

󰀕
1√
N

󰀖
.
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Proof. Observe that β̌g,t is a least squares estimator whose objective function is

󰁛

g0i =g

(yit − x′
itβ)

2.

The result holds by the standard argument for OLS.

Let

Q̇(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβĝi(β),t)

2.

Note also that Q̇(β) = Q̇(β, γ̂(β)) and that β̇ = argminβ∈BGT Q̇(β)

Lemma 7. Suppose that Assumptions 1, 2, and 3 are satisfied. As N, T → ∞, for any

δ > 0, it holds that

β̇g,t = β̌g,t + op(T
−δ),

for all g and t.

Proof. We first evaluate the difference between Q̌(β) and Q̇(β). We note that

Q̌(β)− Q̇(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

1{ĝi(β) ∕= g0i }
󰀓
(yit − x′

itβg0i ,t
)2 − (yit − x′

itβĝi(β),t)
2
󰀔

=
1

NT

N󰁛

i=1

T󰁛

t=1

1{ĝi(β) ∕= g0i }
󰀓
(yit − x′

itβg0i ,t
)2 − (yit − x′

itβĝi(β),t)
2
󰀔

By Assumptions 1.1, 1.3 and 1.5 and Lemma 5, we have, for sufficiently small η,

sup
β∈Nη

󰀏󰀏󰀏Q̌(β)− Q̇(β)
󰀏󰀏󰀏 = op(T

−δ). (S.4)

We then see that

Pr
󰀓󰀏󰀏󰀏Q̌(β̇)− Q̇(β̇)

󰀏󰀏󰀏 > 󰂃T−δ
󰀔
≤ Pr(β̇ /∈ Nη) + Pr

󰀣
sup
β∈Nη

󰀏󰀏󰀏Q̌(β)− Q̇(β)
󰀏󰀏󰀏 > 󰂃T−δ

󰀤
= o(1),
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by that β̇ is consistent from Lemma 4, and (S.4). Therefore we have

Q̌(β̇)− Q̇(β̇) = op(T
−δ).

Similarly, we have

Q̌(β̌)− Q̇(β̌) = op(T
−δ).

Next, we evaluate the difference between β̌ and β̇. By the definition of β̌ and β̇, we

have

0 ≤ Q̌(β̇)− Q̌(β̌) = Q̇(β̇)− Q̇(β̌) + op(T
−δ) ≤ op(T

−δ).

Thus we have

Q̌(β̇)− Q̌(β̌) = op(T
−δ) (S.5)

We observe that

Q̌(β̇)− Q̌(β̌) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̇g0i ,t

)2 − 1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̌g0i ,t

)2

=
1

NT

N󰁛

i=1

T󰁛

t=1

󰀓
(yit − x′

itβ̌g0i ,t
+ x′

it(β̌g0i ,t
− β̇g0i ,t

))2 − (yit − x′
itβ̌g0i ,t

)2
󰀔

=
1

NT

N󰁛

i=1

T󰁛

t=1

󰀓
(x′

it(β̌g0i ,t
− β̇g0i ,t

))2 + 2(yit − x′
itβ̌g0i ,t

)(x′
it(β̌g0i ,t

− β̇g0i ,t
))
󰀔

=
1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β̌g0i ,t

− β̇g0i ,t
))2,

where the last equality holds because β̌ is an OLS estimator and satisfies
󰁓N

i=1

󰁓T
t=1(yit −

x′
itβ̌g0i ,t

)xit = 0. Moreover, we have

1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β̌g0i ,t

− β̇g0i ,t
))2 =

1

T

󰁛

g∈G

(β̌g − β̇g)
′M(γ0, g, g)(β̌g − β̇g)

≥ρ̂
1

T

󰁛

g∈G

󰀐󰀐󰀐β̇g − β̌g

󰀐󰀐󰀐
2

.

44



We thus have, by (S.5) and Assumption 2.1,

1

T

󰁛

g∈G

󰀐󰀐󰀐β̇g − β̌g

󰀐󰀐󰀐
2

= op(T
−δ).

This implies that

󰀐󰀐󰀐β̇g,t − β̌g,t

󰀐󰀐󰀐
2

= op(T
1−δ)

for any δ. Thus we have the desired result.

We can now consider the rate of convergence of the elements of β̇.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Suppose that Ng/N → πg > 0

for any g ∈ G. Then it follows that for all g and t,

β̇g,t − β0
g,t = Op

󰀕
1√
N

󰀖
.

Proof. The theorem follows from Lemmas 6 and 7.

S.4.3 Proofs for Section A.2

We present the proofs of the lemmas in Section A.2 of the main text. We also provide the

statement of each lemma before the proof for ease of reference.

Recall that

Q̊(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβg0i ,t

)2 + λ
󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 ,

and that β̊ = argminβ∈BGT Q̊(β).

Lemma 8. Suppose that Assumptions 1.3, 2.1 and 4.1 hold. Suppose that Ng/N → πg > 0

for any g ∈ G. We have, as N, T → ∞,

1

T

󰀐󰀐󰀐β̊g − β0
g

󰀐󰀐󰀐
2

= Op

󰀕
1

N

󰀖
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for any g ∈ G. We also have, as N, T → ∞,

β̊g,t − β0
g,t = Op

󰀕
1√
N

󰀖
.

Proof. This lemma contains two parts. We first consider the first part regarding the norm

of coefficient difference. Let bt = N−1/2(βg,t − β0
g,t) and b = (b′1, · · · b′T )′ = N−1/2(βg − β0

g ).

Let

Qg(βg) =
1

NT

󰁛

g0i =g

T󰁛

t=1

(yit − x′
itβg,t)

2 + λ

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

Note that β̊g = argminQg(βg).

We have

N(Qg(βg)−Qg(β
0
g )) =

1

T

󰁛

g0i =g

T󰁛

t=1

(yit − x′
itβg,t)

2 +Nλ
T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂

− 1

T

󰁛

g0i =g

T󰁛

t=1

(yit − x′
itβ

0
g,t)

2 −Nλ
T󰁛

t=2

ẇg,t

󰀐󰀐β0
g,t − β0

g,t−1

󰀐󰀐

=
1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt −

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt

+Nλ
󰁛

t∈T 0
m0

g,g

ẇg,t

󰀃󰀐󰀐β0
g,t − β0

g,t−1 +N−1/2(bt − bt−1)
󰀐󰀐−

󰀐󰀐β0
g,t − β0

g,t−1

󰀐󰀐󰀄

+Nλ
󰁛

t∈T 0c
m0

g,g

ẇg,t

󰀐󰀐N−1/2(bt − bt−1)
󰀐󰀐 . (S.6)

We consider the four terms on the right hand side of the last equality of (S.6) in turn. For

the first term, we note, by Assumption 2.1, that

1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt =

1

T
b′M(γ0, g, g)b ≥ ρ̂

1

T
󰀂b󰀂2.
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For the second term, we have

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt = Op

󰀕
1√
T
󰀂b󰀂

󰀖
,

by Assumption 1.3. Next, we consider the third term. We have by the Jensen, triangular

and CS inequalities,

Nλ
󰁛

t∈T 0
m0

g,g

ẇg,t

󰀃󰀐󰀐β0
g,t − β0

g,t−1 +N−1/2(bt − bt−1)
󰀐󰀐−

󰀐󰀐β0
g,t − β0

g,t−1

󰀐󰀐󰀄

≤Nλ
󰁛

t∈T 0
m0

g,g

ẇg,t

󰀐󰀐N−1/2(bt − bt−1)
󰀐󰀐

≤m0
√
Nλ max

s∈T 0
m0

g,g

(ẇg,s)
1

m0

󰁛

t∈T 0
m0

g,g

󰀂bt − bt−1󰀂

≤m0
√
Nλ max

s∈T 0
m0

g,g

(ẇg,s)

󰀳

󰁅󰁃
1

m0

󰁛

t∈T 0
m0

g,g

󰀂bt − bt−1󰀂2

󰀴

󰁆󰁄

1/2

≤2
√
m0Nλ max

s∈T 0
m0

g,g

(ẇg,s)󰀂b󰀂.

By Assumption 4.1, this third term is Op(T
−1/2󰀂b󰀂). Lastly, we consider the fourth term,

and we have

Nλ
󰁛

t∈T 0c
m0

g,g

ẇg,t

󰀐󰀐N−1/2(bt − bt−1)
󰀐󰀐 ≥ 0.

Summing the four parts up, we have

0 ≥ N(Qg(βg)−Qg(β
0
g )) ≥ ρ̂

1

T
󰀂b󰀂2 −Op(T

−1/2󰀂b󰀂).

If 󰀂b󰀂2/T is not stochastically bounded, then the first term, which is positive, dominates

and the first inequality does not hold asymptotically. We thus have the desired result.

Next, we consider the second part regarding the difference between two coefficient
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vectors. The above argument implies that

0 ≥ N(Qg(βg)−Qg(β
0
g )) ≥

1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt −

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt

−
√
Nλ max

s∈T 0
m0

g,g

(ẇg,s)
󰁛

t∈T 0
m0

g,g

󰀂bt − bt−1󰀂 .

We thus have

0 ≥ N(Qg(βg)−Qg(β
0
g )) ≥

1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt −

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt

−
√
Nλ max

s∈T 0
m0

g,g

(ẇg,s)
T󰁛

t=1

2 󰀂bt󰀂 .

The right hand side of the inequality can be analyzed for each t. If |bt| is not Op(1), then

it can be seen that it cannot be optimal. The desired result thus follows.

Recall θ̊g,1 = β̊g,1 and θ̊g,t = β̊g,t − β̊g,t−1.

Lemma 9. Suppose that Assumptions 1.3, 2.1, 1.5, and 4 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. It follows that

Pr
󰀓󰀐󰀐󰀐θ̊g,t

󰀐󰀐󰀐 = 0, ∀t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
→ 1

as N → ∞.

Proof. The proof is by contradiction. Suppose that ∃(t, g) such that 2 ≤ t ≤ T − 1 and

θ̊g,t ∕= 0 for sufficiently large N . Note that 󰀂θ󰀂 is differentiable at θ̊g,t if θ̊g,t ∕= 0. We thus

have the following first order condition (FOC) for β̊g,t.

−2
1

NT

󰁛

g0i =g

(yit − x′
itβ̊g,t)xit + λẇg,t

θ̊g,t

󰀂θ̊g,t󰀂
− λẇg,t+1et+1 = 0,

where et+1 = θ̊g,t+1/󰀂θ̊g,t+1󰀂 if θ̊g,t+1 ∕= 0 and 󰀂et+1󰀂 ≤ 1 otherwise. Multiplying both sides
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of the equation by
√
NT and use yit = x′

itβ
0
g0i ,t

+ 󰂃it, we have

2
1√
N

󰁛

g0i =g

xitx
′
it(β̊g,t − β0

g,t)− 2
1√
N

󰁛

g0i =g

󰂃itxit

+
√
NTλẇg,t

θ̊g,t

󰀂θ̊g,t󰀂
−

√
NTλẇg,t+1et+1 = 0.

The first term is Op(1) by Lemma 8 and Assumption 1.5. The second term is Op(1) by

Assumption 1.3. For the third term, we observe that the absolute value of at least one

element of θ̊g,t/󰀂θ̊g,t󰀂 exceeds 1/
√
k, and that ẇ−1

g,t = Op(N
−κ/2) because t ∈ T 0c

m0
g ,g

and

because of Theorem 1. Therefore, the third term is Op(
√
NTλN−κ/2/

√
k) and this tends

to infinity by Assumption 4.2.

We now consider the term
√
NTλẇg,t+1et+1. Suppose that t + 1 ∈ T 0

m0
g ,g
. In this

case, ẇg,t+1 = Op(J
−κ
min) because of Theorem 1. This and Assumption 4.1 implies that√

NTλẇg,tet+1 = Op(1). In this case, the third term explodes but other terms are stochas-

tically bounded, and the first order condition cannot hold.

Next, we consider the case where t + 1 ∈ T 0c
m0

g ,g
. We note that from the argument in

the previous paragraph, if t = T 0
g,j − 1 ∈ T 0c

m0
g ,g

for some j, then Pr(󰀂θ̊g,t󰀂 = 0) → 1 and
√
NTλẇg,t+1et+1 = Op(1). This implies that for t = T 0

g,j−2 ∈ T 0c
m0

g ,g
, Pr(󰀂θ̊g,t󰀂 = 0) → 1 and

√
NTλẇg,t+1et+1 = Op(1) too. Applying this argument recursively until t = T 0

g,j−1 + 1 ∈
T 0c
m0

g ,g
, we have for all t ∈ T 0c

m0
g ,g
, Pr(󰀂θ̊g,t󰀂 = 0) → 1.

Lastly, we consider the case in which t = T . In this case, the first order condition is

2
1√
N

󰁛

g0i =g

xiTx
′
iT (β̊g,T − β0

g,T )− 2
1√
N

󰁛

g0i =g

󰂃iTxiT +
√
NTλẇg,T eT = 0,

and there is no fourth term. We can apply the argument above and obtain Pr(󰀂θ̊g,t󰀂 =

0) → 1.

Lemma 10. Suppose that Assumptions 1.3, 2.1, 1.5, and 4 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. It holds that, as N → ∞,

Pr(m̊g = m0
g, ∀g ∈ G) → 1,
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and

Pr(T̊g,j = T 0
g,j, ∀j ∈ {1, . . . ,m0

g}, g ∈ G | m̊g = m0
g, ∀g ∈ G) → 1

Proof. The proof is based on an argument essentially identical to the proof of Corollary

3.4 in Qian and Su (2016) and is thus omitted.

Recall that α̊g,j = β̊g,t for T
0
g,j ≤ t < T 0

g,j+1.

Lemma 11. Suppose that Assumptions 1.3, 2.1, 1.5, 4, 5 and 6 hold. Suppose that

Ng/N → πg > 0 for any g ∈ G. Let A be a diagonal matrix whose diagonal elements

are

(I1,1, . . . , I1,m0
1+1, I2,1, . . . , I2,m0

2+1, I3,1 . . . , IG−1,m0
G−1+1, IG,1, . . . , IG,m0

G+1). Let Π be a
󰁓G

g=1(m
0
g+

1)k ×
󰁓G

g=1(m
0
g + 1)k block diagonal matrix whose g-th diagonal block is a (m0

g + 1)k ×
(m0

g + 1)k diagonal matrix whose diagonal elements are πg.

Conditional on m̊g = m0
g for all g ∈ G, we have, if (maxg∈G m0

g)
2/(Imin ming∈G Ng) → 0,

D
√
NA1/2(α̊− α̊0) →d N(0, DΣ−1

x Π−1/2ΩΠ−1/2Σ−1
x D′).

Proof. We note that α̊g,j satisfies the following FOC:

1

NT

󰁛

g0i =g

T 0
g,j+1−1󰁛

t=T 0
g,j

(yit − x′
itα̊g,j)xit +Rg,j,

where Rg,1 = −λẇg,T 0
g,1
eT 0

g,1
, Rg,j = λ(ẇg,T 0

g,j−1
eT 0

g,j−1
− ẇg,T 0

g,j
eT 0

g,j
) for 2 ≤ j ≤ m0

g and

Rg,m0
g+1 = λẇg,T 0

m0
g

eT 0
m0

g

. We thus have

α̊g,j =

󰀳

󰁃
󰁛

g0i =g

T 0
g,j+1−1󰁛

t=T 0
g,j

xitx
′
it

󰀴

󰁄
−1 󰀳

󰁃
󰁛

g0i =g

T 0
g,j+1−1󰁛

t=T 0
g,j

xityit

󰀴

󰁄

+

󰀳

󰁃
󰁛

g0i =g

T 0
g,j+1−1󰁛

t=T 0
g,j

xitx
′
it

󰀴

󰁄
−1

Rg,j.
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Let

Σ̂x,g,j =
1

Ng

1

Ig,j

󰁛

g0i =g

T 0
g,j+1−1󰁛

t=T 0
g,j

xitx
′
it,

Σ̂x,g be a (m0
g + 1)k × (m0

g + 1)k block diagonal matrix whose t-th diagonal block is Σ̂x,g,j

and Σ̂x be a
󰁓G

g=1(m
0
g + 1)k ×

󰁓G
g=1(m

0
g + 1)k block diagonal matrix whose g-th diagonal

block is Σ̂x,g. We can write

√
NA1/2(α̊− α0) = (Σ̂x)

−1Π−1/2(d′1,NT , . . . , d
′
G,NT )

′ + (Σ̂x)
−1Π−1N−1/2R,

where R is a vector of Rg,js. The first term converges to a normal distribution with the

variance-covariance matrix specified in the statement of the theorem. We show that the

second term is op(1). We have

󰀂R󰀂2

≤λ2

G󰁛

g=1

󰀳

󰁃I−1
g,1

󰀐󰀐󰀐ẇg,T 0
g,1
eg,T 0

g,1

󰀐󰀐󰀐
2

+

m0
g󰁛

j=2

I−1
g,j

󰀐󰀐󰀐ẇg,T 0
g,j−1

eg,T 0
g,j−1

󰀐󰀐󰀐
2

+ I−1
g,m0

g+1

󰀐󰀐󰀐󰀐ẇg,T 0
m0

g,1
eg,T 0

m0
g,1

󰀐󰀐󰀐󰀐
2
󰀴

󰁄

≤4
G󰁛

g=1

(m0
g + 1)λ2I−1

min max
g∈G,t∈T 0

m0
g,g

󰀂ẇg,t󰀂2

=Op

󰀣
G󰁛

g=1

(m0
g)λ

2I−1
minJ

−2κ
min

󰀤
.

By Assumptions 5 and 6, the second term is op(1).

S.5 Models with individual-specific fixed effects

In this section, we derive the asymptotic properties of GAGFL in models with individual-

specific fixed effects. This extension is discussed in Section 5 of the main text but we

delegate the theoretical analysis to this supplement.

Recall that the model considered is

yit = µi + x′
itβg0i ,t

+ 󰂃it,
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and we estimate the first-differenced model:

∆yit = x′
itβg0i ,t

− x′
i,t−1βg0i ,t−1 +∆󰂃it.

The estimator is

(β̂, γ̂) = argmin
(β,γ)∈BGT×GN

1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβgi,t + x′

i,t−1βgi,t−1)
2 + λ

󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

S.5.1 Assumptions

We restate the assumptions. Note that are similar to Assumptions 1–5, but we modify

them for models with individual fixed effects. Additional assumptions are also made to

use the results of Qian and Su (2016) directly.

Assumption 7.

1. B is compact.

2. E(∆󰂃itxit) = E(∆󰂃itxi,t−1) = 0 for all i and t.

3.

1

N

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=2

E (∆󰂃it∆󰂃jtx
′
itxjt)

󰀏󰀏󰀏󰀏󰀏 < M

4.

󰀏󰀏󰀏󰀏󰀏
1

N2

N󰁛

i=1

N󰁛

j=1

1

T

T󰁛

t=2

T󰁛

s=2

Cov (∆󰂃it∆󰂃jtx
′
itxjt,∆󰂃is∆󰂃jsx

′
isxjs)

󰀏󰀏󰀏󰀏󰀏 < M

5. There exists M > 0 such that for any N and T ,

1

NT

N󰁛

i=1

T󰁛

t=1

E(󰀂xit󰀂4) < M.

This assumption except for the second item is satisfied under Assumption 1 in the

main text. However, we still make this assumption to facilitate our theory. We note that

Assumption 7.2 is different from Assumption 1.2.
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Assumption 8.

1. Let

MF (γ, g, g̃) =
1

N

N󰁛

i=1

1
󰀋
g0i = g

󰀌
1 {gi = g̃}

×

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

xi1x
′
i1 −xi1x

′
i2 0 . . . 0

−xi2xi1 2xi2x
′
i2 −xi2x

′
i3 . . . . . .

0 −xi3xi2 . . . . . . 0

. . . . . . . . . 2xi,T−1x
′
i,T−1 −xi,T−1xiT

0 . . . 0 −xiTxi,T−1 xiTx
′
iT

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

Let ρ̂F (γ, g, g̃) be the minimum eigenvalue of MF (γ, g, g̃). There exits a ρ̂F such that

ρ̂F →p ρ
F > 0 and ∀g,

min
γ∈GN

max
g̃∈G

ρ̂F (γ, g, g̃) > ρ̂F .

2. Let

DF
gg̃i =

1

T

N󰁛

i=1

T󰁛

t=2

󰀃
x′
it(β

0
g,t − β0

g̃,t)− x′
i,t−1(β

0
g,t−1 − β0

g̃,t−1).
󰀄2

For all g ∕= g̃, there exists a cFg,g̃ > 0 such that

plim
N,T→∞

1

N

N󰁛

i=1

DF
gg̃i > cFg,g̃,

and for all i,

plim
T→∞

DF
gg̃i > cFg,g̃.

This assumption plays a role similar to Assumption 2 in the main text and it guarantees

the identification of the parameters.

Assumption 9.
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1. There exists a constant M∗
ex such that as N, T → ∞, for all δ > 0,

sup
1≤i≤N

Pr

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2 ≥ M∗
ex

󰀤
= O(T−δ),

and

sup
1≤i≤N

Pr

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2 ≥ M∗
ex

󰀤
= O(T−δ).

2. There exists a constant M∗
x such that as N, T → ∞, for all δ > 0,

sup
1≤i≤N

Pr

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4 ≥ M∗
x

󰀤
= O(T−δ).

3. There exist constants a > 0 and d1 > 0 and a sequence α[t] < exp(−atd1) such that,

for all i = 1, . . . , N and (g, g̃) ∈ G2 such that g ∕= g̃, {x′
it(β

0
g̃,t − β0

g,t)− xi,t−1(β
0
,̃t−1 −

β0
g,t−1)}t, {(x′

it(β
0
g̃,t − β0

g,t) − x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it}t are strongly mixing process

with mixing coefficients α[t]. Moreover, E(xit∆󰂃it) = 0 and E(xi,t−1∆󰂃it) = 0.

4. There exist constants bx > 0, be > 0, d2x > 0 and d2e such that Pr(|x′
it(β

0
g̃,t −

β0
g,t) − x′

i,t−1(β
0
g̃,t−1 − β0

g,t−1)| > m) ≤ exp(1 − (m/bx))
d2x and Pr(|(x′

it(β
0
g̃,t − β0

g,t) −
x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it| > m) ≤ exp(1− (m/be))
d2e, for any i, t and m > 0.

This assumption is similar to Assumption 3 in the main text. It imposes restrictions

on the tail properties of the variables and guarantees that clustering errors are small.

Assumptions 7–9 are needed for accurate group estimation in the presence of individual

fixed effects.

For break detection, it is not necessary to introduce new assumptions on breaks since

Assumptions 4 and 6 in the main text are also sufficient here. Nevertheless, to directly

apply the results of Qian and Su (2016) for AGFL in the presence of individual fixed effects,

we introduce the following new assumption.

Assumption 10.

1. {(xi1, 󰂃i1), . . . , (xiT , 󰂃iT )}’s are independent over i.

2. max1≤i≤N max1≤t≤T E(󰀂xit󰀂2τ0) < C < ∞ and max1≤i≤N max1≤t≤T E(󰀂󰂃it󰀂2τ0) <

C < ∞ for some C and τ0 ≥ 2.

54



3. For τ0 that satisfies condition 2, there exists ε0 > 0 such that N1−τ0T (lnT )󰂃0τ0 → 0

as N, T → ∞.

Lastly, we make an assumption to derive the asymptotic distribution of GAGFL. Let

TriD(A,D)M denote the symmetric block tridiagonal matrix defined by A and D:

TriD(A,D)M =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

D1 −A′
2

−A2 D2 −A′
3

−A3 D3 −A′
4

. . . . . . . . .

−AM−1 DM−1 −A′
M

−AM DM

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

whereDm’s are symmetric, Am’s are square matrices and the blank blocks are zero matrices.

Let

Φ†
g,l+1 =

1

Ng

󰁛

g0i =g

xi,Tl
x′
i,Tl−1

,

for l = 1, . . . ,m0
g. Define

Φg,1 =
1

Ng

󰁛

g0i =g

T1−1󰁛

t=1

∆xit∆x′
it +

1

Ng

󰁛

g0i =g

xi,T1−1x
′
i,T1−1,

Φg,l =
1

Ng

󰁛

g0i =g

Tl−1󰁛

t=Tl−1

∆xit∆x′
it +

1

Ng

󰁛

g0i =g

xi,Tl−1x
′
i,Tl−1 +

1

Ng

󰁛

g0i =g

xi,Tl−1
x′
i,Tl−1

,

for l = 2, . . . ,m0
g,

Φg,m0
g+1 =

1

Ng

󰁛

g0i =g

T󰁛

t=T
m0

g

∆xit∆x′
it +

1

Ng

󰁛

g0i =g

xi,T
m0

g
x′
i,T

m0
g

.

Then we denote

Σ̂x,g = TriD(Φ†
g,Φg)m0

g+1,
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and let Σ̂x be the block diagonal matrix whose g-th block is Σ̂x,g. Furthermore, define

Ψg,1 =
1

Ng

󰁛

g0i =g

T1−1󰁛

t=1

∆xit∆󰂃′it −
1

Ng

󰁛

g0i =g

xi,T1−1∆󰂃i,T1 ,

Ψg,l =
1

Ng

󰁛

g0i =g

Tl−1󰁛

t=Tl−1

∆xit∆󰂃it −
1

Ng

󰁛

g0i =g

xi,Tl−1∆󰂃i,Tl
+

1

Ng

󰁛

g0i =g

xi,Tl−1
∆󰂃i,Tl−1

,

for l = 2, . . . ,m0
g,

Ψg,m0
g+1 =

1

Ng

󰁛

g0i =g

T󰁛

t=T
m0

g

∆xit∆󰂃it +
1

Ng

󰁛

g0i =g

xi,T
m0

g
∆󰂃′i,T

m0
g

.

Then we denote

Ψg =
󰀓
Ψ′

g,1, . . . ,Ψ
′
g,m0

g

󰀔′
,

and let Ψ be the vector of Ψg’s.

Assumption S.1. Let A be a diagonal matrix whose diagonal elements are

(I1,1, . . . , I1,m0
1+1, I2,1, . . . , I2,m0

2+1, I3,1 . . . , IG−1,m0
G−1+1, IG,1, . . . , IG,m0

G+1). There exists Σx

such that the spectral norm of A−1/2Σ̂xA
−1/2 − Σx converges to 0 in probability. Ng/N →

πg > 0 for any g ∈ G. Let Π be a
󰁓G

g=1(m
0
g + 1)k ×

󰁓G
g=1(m

0
g + 1)k block diagonal matrix

whose g-th diagonal block is a (m0
g + 1)k × (m0

g + 1)k diagonal matrix with elements being

πg. For a l ×
󰁓G

g=1(m
0
g + 1)k matrix D, where l does not depend on T , we have

√
NDΣ−1

x Π−1/2Ψ →d N(0,ΩD),

for some positive definite matrix ΩD.

While this condition may look complicated, it simply states that the standard assump-

tions for least squares are satisfied for each group and each span of periods between two

breaks.

S.5.2 Asymptotic results

Under these new sets of assumptions, we show that the GAGFL estimator applied to first

differenced models has asymptotic properties similar to those in the case of level models
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without individual specific intercepts. The lemmas and theorems are compactly presented

in this subsection, while their proofs are delegated in the next subsection S.5.3.

We first show that the estimation error in group structure has a limited impact on the

estimation of the coefficients. Let

β̊ = arg min
β∈BGT

󰀣
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβg0i ,t

+ x′
i,t−1βg0i ,t−1)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂
󰀤
.

Note that β̊ is the estimator of β when the group memberships (i.e., γ0) are known. With

the assumptions stated above, Lemma 2 states that the difference between β̂ and β̊ is

small:

Lemma 2. Suppose that Assumptions 7, 8 and 9 are satisfied. As N, T → ∞, for any

δ > 0, it holds that

β̂g,t = β̊g,t + op(T
−δ),

for all g and t.

Note that δ in the theorem can be arbitrary large.

The following theorem states that our method consistently spots dates in which there

is no break. Let θ̂g,t = β̂g,t − β̂g,t−1.

Theorem S.1. Suppose that Assumptions 4, 7, 8, 9 and 10 hold. It follows that

Pr
󰀓󰀐󰀐󰀐θ̂g,t

󰀐󰀐󰀐 = 0, ∀t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
→ 1,

as N, T → ∞ with N/T δ → 0 for some δ.

This theorem requires that N/T δ → 0 for some δ. Since δ is arbitrary, this condition is

satisfied as long as N is of geometric order of T but it does not hold if N is of exponential

order of T . Note that the probability in this theorem is unconditional in the sense that it

does not depend on knowing the true group membership.

Next, we present the follow theorem that states that the number of breaks and break

dates are consistently estimated.

Theorem S.2. Suppose that Assumptions 4, 7, 8, 9 and 10 hold. It holds that, as N, T →
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∞ with N/T δ → 0 for some δ > 0,

Pr(m̂g = m0
g, ∀g ∈ G) → 1,

and

Pr(T̂g,j = T 0
g,j, ∀j ∈ {1, . . . ,m0

g}, g ∈ G | m̂g = m0
g, ∀g ∈ G) → 1.

Lastly, we present the asymptotic distribution of β̂. The asymptotic distribution is the

same as that of the least squares estimator with known group memberships and known

breaks. To state the theorem, we introduce the following notation. Denote Ng as the

number of individual units in group g and Ig,j as the number of time observations between

T 0
g,j and T 0

g,j+1 for group g. The asymptotic distribution is given in the following theorem.

Theorem S.3. Suppose that Assumptions 4, 6, 7, 8, 9, 10 and S.1 hold. Conditional on

m̂g = m0
g for all g ∈ G, we have, if (maxg∈G m0

g)
2/(Imin ming∈G Ng) → 0,

D
√
NA1/2(α̂− α0) →d N(0,ΩD).

S.5.3 Proofs for the results in Section S.5.2

We present the proofs of the results in Section S.5.2. The structure of the proofs is similar to

the technical appendix attached to the main text. We first consider the GFE-type estimator

in S.5.3.1. Then we examine the GAGFL estimator with known group membership in

S.5.3.2. Note that this is just an application of the AGFL estimator in Qian and Su (2016)

to each group and we rely on their analysis. Lastly, asymptotic properties of GAGFL are

discussed in S.5.3.3.

S.5.3.1 Asymptotic properties of the GFE-type estimator

The argument given in this section are similar to those in Bonhomme and Manresa (2015).

Let

Q̇NT (β, γ) =
1

NT

N󰁛

i=1

T󰁛

i=1

(∆yit − x′
itβgi,t + x′

i,t−1βgi,t−1)
2
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and

Q̃NT (β, γ)

=
1

NT

N󰁛

i=1

T󰁛

i=1

(x′
it(β

0
g0i ,t

− βgi,t)− x′
i,t−1(β

0
g0i ,t−1 − βgi,t−1))

2 +
1

NT

N󰁛

i=1

T󰁛

i=1

(∆󰂃it)
2.

As in the case of the previous section, the Cauchy-Schwarz inequality is abbreviated as

the CS inequality and M denotes a generic universal constant.

Lemma S.1. Suppose that Assumptions 7.1–4 hold.

sup
(β,γ)∈BGT×ΓG

󰀏󰀏󰀏Q̇NT (β, γ)− Q̃NT (β, γ)
󰀏󰀏󰀏 = op(1).

Proof. We observe that

Q̇NT (β, γ)− Q̃NT (β, γ)

=
2

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβ

0
g0i ,t

− 2

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβgi,t

− 2

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
i,t−1β

0
g0i ,t−1 +

2

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβgi,t−1.

We have

1

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβgi,t

=
G󰁛

g=1

1

NT
1{gi = g}

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβg,t

=
G󰁛

g=1

1

T

T󰁛

t=2

β′
g,t

1

N

N󰁛

i=1

1{gi = g}∆󰂃itxit.

For any g ∈ G, the CS inequality implies that

󰀣
1

T

T󰁛

t=2

β′
g,t

1

N

N󰁛

i=1

1{gi = g}∆󰂃itxit

󰀤2
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≤
󰀣

1

T

T󰁛

t=2

󰀐󰀐β′
g,t

󰀐󰀐2

󰀤
×

󰀳

󰁃 1

T

T󰁛

t=2

󰀐󰀐󰀐󰀐󰀐
1

N

N󰁛

i=1

1{gi = g}∆󰂃itxit

󰀐󰀐󰀐󰀐󰀐

2
󰀴

󰁄 .

Assumption 7.1 implies that

1

T

T󰁛

t=2

󰀐󰀐β′
g,t

󰀐󰀐2
< M.

We also have

1

T

T󰁛

t=2

󰀐󰀐󰀐󰀐󰀐
1

N

N󰁛

i=1

1{gi = g}∆󰂃itxit

󰀐󰀐󰀐󰀐󰀐

2

=
1

T

T󰁛

t=2

1

N2

N󰁛

i=1

N󰁛

j=1

1{gi = g}1{gj = g}∆󰂃it∆󰂃jtx
′
itxjt

=
1

N2

N󰁛

i=1

N󰁛

j=1

1{gi = g}1{gj = g} 1
T

T󰁛

t=2

∆󰂃it∆󰂃jtx
′
itxjt

≤ 1

N2

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=2

∆󰂃it∆󰂃jtx
′
itxjt

󰀏󰀏󰀏󰀏󰀏

≤ 1

N2

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=2

E (∆󰂃it∆󰂃jtx
′
itxjt)

󰀏󰀏󰀏󰀏󰀏

+
1

N2

N󰁛

i=1

N󰁛

j=1

󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=2

(∆󰂃it∆󰂃jtx
′
itxjt − E (∆󰂃it∆󰂃jtx

′
itxjt))

󰀏󰀏󰀏󰀏󰀏

=op(1),

where the last equality follows by Assumptions 7.3 and 7.4. Thus, we have

1

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβgi,t = op(1)

uniformly over over BGT × ΓG. Similarly we have

1

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβ

0
g0i ,t

= op(1),
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1

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
i,t−1β

0
g0i ,t−1 = op(1),

and

1

NT

N󰁛

i=1

T󰁛

t=2

∆󰂃itx
′
itβgi,t−1 = op(1).

Therefore, we have the desired result.

We consider the following Hausdorff distance in BGT such that

dH(β
a, βb) = max

󰀫
max
g∈G

󰀣
min
g̃∈G

1

T

T󰁛

t=2

󰀐󰀐βa
g̃,t − βb

g,t

󰀐󰀐2

󰀤
,max

g̃∈G

󰀣
min
g∈G

1

T

T󰁛

t=2

󰀐󰀐βa
g̃,t − βb

g,t

󰀐󰀐2

󰀤󰀬
.

Lemma S.2. Suppose that Assumptions 7.1–4 and 8 hold.

dH(β̇, β
0) = op(1).

Proof. By Lemma S.1, we have

Q̃(β̇, γ̇) = Q̇(β̇, γ̇) + op(1) ≤ Q̇(β0, γ0) + op(1) = Q̃(β0, γ0) + op(1).

Because Q̃(β, γ) is minimized at β = β0 and γ = γ0, we have

Q̃(β̇, γ̇)− Q̃(β0, γ0) = op(1).

On the other hand, we have

Q̃(β, γ)− Q̃(β0, γ0)

=
1

NT

N󰁛

i=1

T󰁛

t=2

󰀓
x′
it(β

0
g0i ,t

− βgi,t)− x′
i,t−1(β

0
g0i ,t−1 − βgi,t−1)

󰀔2

=
G󰁛

g=1

G󰁛

g̃=1

1

T

󰀃
β0
g − βg̃

󰀄′
MF (γ, g, g̃)

󰀃
β0
g − βg̃

󰀄

≥
G󰁛

g=1

G󰁛

g̃=1

ρ̂F (γ, g, g̃)

󰀣
1

T

T󰁛

t=2

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤
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≥
G󰁛

g=1

max
g̃∈G

ρ̂F (γ, g, g̃)min
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤

≥
G󰁛

g=1

ρ̂F min
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤

≥ρ̂F max
g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤󰀤
.

Note that ρ̂F is asymptotically bounded away from zero by Assumption 8.1.

Therefore we have

max
g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1). (S.7)

Let

σ(g) = argmin
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤
.

Then we have for g̃ ∕= g,

󰀣
1

NT

N󰁛

i=1

T󰁛

t=2

󰀓
x′
it(β̇σ(g),t − β̇σ(g̃),t)− x′

i,t−1(β̇σ(g),t−1 − β̇σ(g̃),t−1)
󰀔2
󰀤1/2

≥
󰀣

1

NT

N󰁛

i=1

T󰁛

t=2

󰀃
x′
it(β

0
g,t − β0

g̃,t)− x′
i,t−1(β

0
g,t−1 − β0

g̃,t−1)
󰀄2
󰀤1/2

−
󰀣

1

NT

N󰁛

i=1

T󰁛

t=2

󰀓
x′
it(β̇σ(g),t − β0

g,t)− x′
i,t−1(β̇σ(g),t−1 − β0

g,t−1)
󰀔2
󰀤1/2

−
󰀣

1

NT

N󰁛

i=1

T󰁛

t=2

󰀓
x′
it(β̇σ(g̃),t − β0

g̃,t)− x′
i,t−1(β̇σ(g̃),t−1 − β0

g̃,t−1)
󰀔2
󰀤1/2

.

Assumption 8.2 states that the first term in the right hand side of the inequality is bounded

away from zero. Equation (S.7) implies that the second and third terms are op(1). There-

fore, we have σ(g) ∕= σ(g̃) with probability approaching one, which implies that with
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probability approaching one σ is bijective and has the inverse σ−1. Thus, we have

min
g∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤

≥
󰀣

1

T

T󰁛

t=2

󰀐󰀐󰀐β0
σ−1(g̃),t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤

=min
h∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
σ−1(g̃),t − β̇h,t

󰀐󰀐󰀐
2
󰀤

= op(1),

where the last equality follows by (S.7). Therefore we have

max
g̃∈G

󰀣
min
g∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
g,t − β̇g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1).

We thus have the desired result.

The proof of Lemma S.2 shows that there exists a permutation σ such that

1

T

T󰁛

t=2

󰀐󰀐󰀐β0
σ(g),t − β̇g,t

󰀐󰀐󰀐
2

= op(1).

We take σ(g) = g by relabeling.

Define

Nη =

󰀫
β ∈ BGT :

1

T

T󰁛

t=2

󰀐󰀐β0
g,t − βg,t

󰀐󰀐2
< η, ∀g ∈ G

󰀬
.

Let

ĝi(β) = argmin
g∈G

T󰁛

t=2

(∆yit − x′
itβg,t + x′

i,t−1βg,t−1)
2. (S.8)

Lemma S.3. Suppose that Assumptions 8.2 and 9 are satisfied. For η > 0 small enough,

we have, ∀δ > 0,

sup
β∈Nη

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
= op(T

−δ).
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Proof. For any g ∈ G, we have

1 {ĝi(β) = g} ≤ 1

󰀫
T󰁛

t=2

(∆yit − x′
itβg,t + x′

i,t−1βg,t−1)
2 ≤

T󰁛

t=2

(∆yit − x′
itβg0i ,t

+ x′
i,t−1βg0i .t−1)

2

󰀬
.

Thus, we have

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
=

G󰁛

g=1

1

N

N󰁛

i=1

1
󰀋
g0i ∕= g

󰀌
1 {ĝi(β) = g}

≤
G󰁛

g=1

1

N

N󰁛

i=1

Zig(β),

where

Zig(β) = 1
󰀋
g0i ∕= g

󰀌
1

󰀫
T󰁛

t=2

(∆yit − x′
itβg,t + x′

i,t−1βg,t−1)
2 ≤

T󰁛

t=2

(∆yit − x′
itβg0i ,t

+ x′
i,t−1βg0i ,t−1)

2

󰀬
.

We now bound Zig(β). Let

zit(g, g̃) =(x′
it(βg̃,t − βg,t)− x′

i,t−1(βg̃,t−1 − βg,t−1))

×
󰀕
x′
itβ

0
g̃,t − x′

i,t−1β
0
g̃,t−1 +∆󰂃it −

x′
it(βg̃,t + βg,t)− x′

i,t−1(βg̃,t−1 + βg,t−1)

2

󰀖
.

We have

Zig(β) ≤1
󰀋
g0i ∕= g

󰀌
× 1

󰀫
T󰁛

t=2

zit(g, g
0
i ) ≤ 0

󰀬

≤ max
g̃∈G\{g}

1

󰀫
T󰁛

t=2

zit(g, g̃) ≤ 0

󰀬
.

Let

z0it(g, g̃) =(x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))

×
󰀕
x′
itβ

0
g̃,t − x′

i,t−1β
0
g̃,t−1 +∆󰂃it −

x′
it(β

0
g̃,t + β0

g,t)− x′
i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2

󰀖
.
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Let

AT =

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

(zit(g, g̃)− z0it(g, g̃))

󰀏󰀏󰀏󰀏󰀏 .

Then we have

AT ≤

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)∆󰂃it −
T󰁛

i=1

x′it(β
0
g̃,t − β0

g,t)∆󰂃it

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)∆󰂃it −
T󰁛

i=1

x′i,t−1(β
0
g̃,t−1 − β0

g,t−1)∆󰂃it

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)x
′
itβ

0
g̃,t −

T󰁛

i=1

x′it(β
0
g̃,t − β0

g,t)x
′
itβ

0
g̃,t

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)x
′
itβ

0
g̃,t −

T󰁛

i=1

x′i,t−1(β
0
g̃,t−1 − β0

g,t−1)x
′
itβ

0
g̃,t

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)x
′
i,t−1β

0
g̃,t−1 −

T󰁛

i=1

x′it(β
0
g̃,t − β0

g,t)x
′
i,t−1β

0
g̃,t−1

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)x
′
i,t−1β

0
g̃,t−1 −

T󰁛

i=1

x′i,t−1(β
0
g̃,t−1 − β0

g,t−1)x
′
i,t−1β

0
g̃,t−1

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)
x′it(βg̃,t + βg,t)

2
−

T󰁛

i=1

x′it(βg̃,t − βg,t)
x′it(β

0
g̃,t + β0

g,t)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)
x′it(β

0
g̃,t + β0

g,t)

2
−

T󰁛

i=1

x′it(β
0
g̃,t − β0

g,t)
x′it(β

0
g̃,t + β0

g,t)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)
x′it(βg̃,t + βg,t)

2
−

T󰁛

i=1

x′i,t−1(βg̃,t−1 − βg,t−1)
x′it(β

0
g̃,t + β0

g,t)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)
x′it(β

0
g̃,t + β0

g,t)

2
−

T󰁛

i=1

x′i,t−1(β
0
g̃,t−1 − β0

g,t−1)
x′it(β

0
g̃,t + β0

g,t)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)
x′i,t−1(βg̃,t−1 + βg,t−1)

2
−

T󰁛

i=1

x′it(βg̃,t − βg,t)
x′i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′it(βg̃,t − βg,t)
x′i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2
−

T󰁛

i=1

x′it(β
0
g̃,t − β0

g,t)
x′i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)
x′i,t−1(βg̃,t−1 + βg,t−1)

2
−

T󰁛

i=1

x′i,t−1(βg̃,t−1 − βg,t−1)
x′i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2

󰀏󰀏󰀏󰀏󰀏
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+

󰀏󰀏󰀏󰀏󰀏

T󰁛

t=2

x′i,t−1(βg̃,t−1 − βg,t−1)
x′i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2
−

T󰁛

i=1

x′i,t−1(β
0
g̃,t−1 − β0

g,t−1)
x′i,t−1(β

0
g̃,t−1 + β0

g,t−1)

2

󰀏󰀏󰀏󰀏󰀏 .

Thus, when β ∈ Nη, the CS inequality implies that

AT ≤2T

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2
󰀤1/2

√
η

+ 2T

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2
󰀤1/2

√
η

+ 2T

󰀣
1

T

T󰁛

t=2

(x′
itβ

0
g̃,t)

2 󰀂xit󰀂2
󰀤1/2

√
η

+ 2T

󰀣
1

T

T󰁛

t=2

(x′
i,t−1β

0
g̃,t−1)

2 󰀂xit󰀂2
󰀤1/2

√
η

+ 2T

󰀣
1

T

T󰁛

t=2

(x′
itβ

0
g̃,t)

2 󰀂xi,t−1󰀂2
󰀤1/2

√
η

+ 2T

󰀣
1

T

T󰁛

t=2

(x′
i,t−1β

0
g̃,t−1)

2 󰀂xi,t−1󰀂2
󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
it(βg̃,t − βg,t))

2 󰀂xit󰀂2
󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
i,t−1(βg̃,t−1 − βg,t−1))

2 󰀂xit󰀂2
󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
it(βg̃,t − βg,t))

2 󰀂xi,t−1󰀂2
󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
i,t−1(βg̃,t−1 − βg,t−1))

2 󰀂xi,t−1󰀂2
󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
it(β

0
g̃,t + β0

g,t))
2 󰀂xit󰀂2

󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
i,t−1(β

0
g̃,t−1 + β0

g,t−1))
2 󰀂xit󰀂2

󰀤1/2

√
η
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+ T

󰀣
1

T

T󰁛

t=2

(x′
it(β

0
g̃,t + β0

g,t))
2 󰀂xi,t−1󰀂2

󰀤1/2

√
η

+ T

󰀣
1

T

T󰁛

t=2

(x′
i,t−1(β

0
g̃,t−1 + β0

g,t−1))
2 󰀂xi,t−1󰀂2

󰀤1/2

√
η.

Since B is bounded, we have, for β ∈ Nη,

AT ≤C1
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2
󰀤1/2

+ C3
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2

,

where C1, C2 and C3 are constants independent of η and T .

Thus, we have

Zig(β) ≤ max
g̃∈G\{g}

1
󰁱 T󰁛

t=2

z0it(g, g̃) ≤ C1
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2
󰀤1/2

+ C3
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2 󰁲

.

Let

Z̃ig = max
g̃∈G\{g}

1
󰁱 T󰁛

t=2

z0it(g, g̃) ≤ C1
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2
󰀤1/2

+ C3
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2 󰁲

.

Thus, we have

sup
β∈Nη

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
≤ 1

N

G󰁛

g=1

N󰁛

i=1

Zig(β) ≤
1

N

G󰁛

g=1

N󰁛

i=1

Z̃ig.

Note that Z̃ig does not depend on β.
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We now bound Pr(Z̃ig = 1). We observe

Pr(Z̃ig = 1)

≤
󰁛

g̃∈G\{g}

Pr
󰀓 T󰁛

t=2

z0it(g, g̃) ≤ C1
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2
󰀤1/2

+ C2
√
ηT

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2
󰀤1/2

+ C3
√
ηT

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4
󰀤1/2 󰀔

.

Let M∗ > max(M∗
ex,M

∗
x), where M∗

ex and M∗
x are defined in Assumptions 9.1 and 9.2,

respectively. Thus, we have

Pr(Z̃ig = 1)

≤
󰁛

g̃∈G\{g}

󰁫
Pr

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2 ≥ M∗

󰀤
+ Pr

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2 ≥ M∗

󰀤

+ Pr

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4 ≥ M∗

󰀤

+ Pr

󰀣
1

T

T󰁛

t=2

󰀃
x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1)
󰀄2 ≤

cFg,g̃
2

󰀤

+ Pr

󰀣
T󰁛

t=2

(x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it ≤ −T
cFg,g̃
4

+ TC3
√
η
√
M∗

󰀤󰁬
,

where C3 is a constant independent of η and T . Assumptions 9.1 and 9.2 give that

Pr

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxit󰀂2 ≥ M∗

󰀤
+ Pr

󰀣
1

T

T󰁛

t=2

󰀂∆󰂃itxi,t−1󰀂2 ≥ M∗

󰀤
+ Pr

󰀣
1

T

T󰁛

t=1

󰀂xit󰀂4 ≥ M∗

󰀤

=O(T−δ).

Under Assumptions 8.2, 9.3 and 9.4, a very similar argument to Bonhomme and Manresa

(2015, page 1176) implies that

Pr

󰀣
1

T

T󰁛

i=1

󰀃
x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1)
󰀄2 ≤

cFg,g̃
2

󰀤
= O(T−δ).
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Take η such that

η ≤
󰀣
ming̃∈G\{g} c

F
g,g̃

8C3

√
M∗

󰀤
.

We then have

Pr

󰀣
T󰁛

t=2

(x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it ≤ −T
cFg,g̃
4

+ TC3
√
η
√
M∗

󰀤

≤Pr

󰀣
1

T

T󰁛

t=2

(x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it ≤ −
cFg,g̃
8

󰀤

≤Pr

󰀣󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=2

(x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it

󰀏󰀏󰀏󰀏󰀏 >
cFg,g̃
8

󰀤
.

Under Assumptions 9.3 and 9.4, a very similar argument to Bonhomme and Manresa (2015,

page 1177) implies that

Pr

󰀣󰀏󰀏󰀏󰀏󰀏
1

T

T󰁛

t=2

(x′
it(β

0
g̃,t − β0

g,t)− x′
i,t−1(β

0
g̃,t−1 − β0

g,t−1))∆󰂃it

󰀏󰀏󰀏󰀏󰀏 >
cFg,g̃
8

󰀤
= O(T−δ).

We thus have

Pr(Z̃ig = 1) ≤ (G− 1)O(T−δ).

This implies that

E

󰀣
sup
β∈Nη

1

N

N󰁛

i=1

1
󰀋
ĝi(β) ∕= g0i

󰀌
󰀤

≤ 1

N

G󰁛

g=1

N󰁛

i=1

E
󰀓
Z̃ig

󰀔

=
1

N

G󰁛

g=1

N󰁛

i=1

Pr
󰀓
Z̃ig = 1

󰀔

=G(G− 1)O(T−δ)

=O(T−δ).
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The Markov inequality implies the desired result.

Let

β̌ = arg min
β∈BGT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβg0i ,t

+ x′
i,t−1βg0i ,t−1)

2.

Note that β̌ is the estimator of β when the group memberships (i.e., γ0) are known. Let

Q̌(β) =
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβg0i ,t

+ x′
i,t−1βg0i .t−1)

2.

Note that Q̌(β) = Q̇(β, γ0) and that β̌ = argminβ∈BGT Q̌(β). We have the following result.

Lemma S.4. (Qian and Su, 2016, Lemma B.2). Suppose that Assumptions 7, 8 and 10

are satisfied. As N, T → ∞,

β̌g,t − β0
g,t = Op

󰀕
1√
N

󰀖
.

for each t = 1, 2, . . . , T and for all g ∈ G.

Let

Q̇(β) =
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβĝi(β),t + x′

i,t−1βĝi(β),t−1)
2.

Note also that Q̇(β) = Q̇(β, γ̂(β)) and that β̇ = argminβ∈BGT Q̇(β)

Lemma S.5. Suppose that Assumptions 7, 8 and 9 are satisfied. As N, T → ∞, for any

δ > 0, it holds that

β̇g,t = β̌g,t + op(T
−δ),

for all g and t.
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Proof. We first evaluate the difference between Q̌(β) and Q̇(β). We note that

Q̌(β)− Q̇(β)

=
1

NT

N󰁛

i=1

T󰁛

t=2

1{ĝi(β) ∕= g0i }

×
󰀓
(∆yit − x′

itβg0i ,t
+ x′

i,t−1βg0i ,t−1)
2 − (∆yit − x′

itβĝi(β),t + x′
i,t−1βĝi(β),t−1)

2
󰀔
.

By Assumptions 7.1, 7.3 and 7.5 and Lemma S.3, we have, for sufficiently small η,

sup
β∈Nη

󰀏󰀏󰀏Q̌(β)− Q̇(β)
󰀏󰀏󰀏 = op(T

−δ). (S.9)

We then see that

Pr
󰀓󰀏󰀏󰀏Q̌(β̇)− Q̇(β̇)

󰀏󰀏󰀏 > 󰂃T−δ
󰀔
≤ Pr(β̇ /∈ Nη) + Pr

󰀣
sup
β∈Nη

󰀏󰀏󰀏Q̌(β)− Q̇(β)
󰀏󰀏󰀏 > 󰂃T−δ

󰀤
= o(1),

by that β̇ is consistent by Lemma S.2, and (S.9). Therefore we have

Q̌(β̇)− Q̇(β̇) = op(T
−δ).

Similarly, we have

Q̌(β̌)− Q̇(β̌) = op(T
−δ).

Next, we evaluate the difference between β̌ and β̇. By the definition of β̌ and β̇, we

have

0 ≤ Q̌(β̇)− Q̌(β̌) = Q̇(β̇)− Q̇(β̌) + op(T
−δ) ≤ op(T

−δ).

Thus we have

Q̌(β̇)− Q̌(β̌) = op(T
−δ). (S.10)

We observe that

Q̌(β̇)− Q̌(β̌)
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=
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβ̇g0i ,t

+ x′
i,t−1β̇g0i ,t−1)

2 − 1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβ̌g0i ,t

+ x′
i,t−1β̌g0i ,t−1)

2

=
1

NT

N󰁛

i=1

T󰁛

t=2

󰀃
(∆yit − x′

itβ̌g0i ,t
+ x′

i,t−1β̌g0i ,t−1 + x′
it(β̌g0i ,t

− β̇g0i ,t
)− xi,t−1(β̌g0i ,t−1 − β̇g0i ,t−1))

2

− (∆yit − x′
itβ̌g0i ,t

+ x′
i,t−1β̌g0i ,t−1)

2
󰀄

=
1

NT

N󰁛

i=1

T󰁛

t=2

󰀃
(x′

it(β̌g0i ,t
− β̇g0i ,t

)− xi,t−1(β̌g0i ,t−1 − β̇g0i ,t−1))
2

+ 2(∆yit − x′
itβ̌g0i ,t

+ x′
i,t−1β̌g0i ,t−1)(x

′
it(β̌g0i ,t

− β̇g0i ,t
)− x′

i,t−1(β̌g0i ,t−1 − β̇g0i ,t−1))
󰀄

=
1

NT

N󰁛

i=1

T󰁛

t=2

(x′
it(β̌g0i ,t

− β̇g0i ,t
)− xi,t−1(β̌g0i ,t−1 − β̇g0i ,t−1))

2,

where the last equality holds because β̌ is an OLS estimator and satisfies

N󰁛

i=1

(∆yit − x′
itβ̌g0i ,t

+ x′
i,t−1β̌g0i ,t−1)xit1{t > 1}

−
N󰁛

i=1

(∆yi,t+1 − x′
i,t+1β̌g0i ,t

+ x′
itβ̌g0i ,t

)xit1{t < T} = 0.

Moreover, we have

1

NT

N󰁛

i=1

T󰁛

t=2

(x′
it(β̌g0i ,t

− β̇g0i ,t
)− xi,t−1(β̌g0i ,t−1 − β̇g0i ,t−1))

2

=
1

T

󰁛

g∈G

(β̌g − β̇g)
′MF (γ0, g, g)(β̌g − β̇g)

≥ρ̂F
1

T

󰁛

g∈G

󰀐󰀐󰀐β̇g − β̌g

󰀐󰀐󰀐
2

.

We thus have, by (S.10) and Assumption 8.1,

1

T

󰁛

g∈G

󰀐󰀐󰀐β̇g − β̌g

󰀐󰀐󰀐
2

= op(T
−δ).

This implies that

󰀐󰀐󰀐β̇g,t − β̌g,t

󰀐󰀐󰀐
2

= op(T
1−δ)
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for any δ. Thus we have the desired result.

We can now have the asymptotic distribution of β̇.

Theorem S.4. Suppose that Assumptions 7, 8, 9 and 10 are satisfied. As N, T → ∞ with

N/T a → 0 for some a > 0,

β̇g,t − β0
g,t = Op

󰀕
1√
N

󰀖
,

for each t = 1, 2, . . . , T and for all g ∈ G.

Proof. The theorem follows by Lemmas S.4 and Lemma S.5.

S.5.3.2 Asymptotic properties of the GAGFL estimator with known group

membership

The results presented here are directly implied by the results of Qian and Su (2016).

Let

Q̊(β) =
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβg0i ,t

+ x′
i,t−1βg0i ,t−1)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

Note that Q̊(β) = Q̂(β, γ0) and that β̊ = argminβ∈BGT Q̊(β).

We derive the asymptotic distribution of β̊.

Lemma S.6. Suppose that Assumptions 4.1, 7, 8 and 10 hold. We have, as N, T → ∞,

1

T

󰀐󰀐󰀐β̊g − β0
g

󰀐󰀐󰀐
2

= Op

󰀕
1

N

󰀖

for any g ∈ G. We also have, as N, T → ∞,

β̊g,t − β0
g,t = Op

󰀕
1√
N

󰀖
.

Proof. The proof is almost the same as that of Theorem 3.2(i) in Qian and Su (2016).
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Let θ̊g,1 = β̊g,1 and θ̊g,t = β̊g,t − β̊g,t−1.

Lemma S.7. Suppose that Assumptions 4, 7, 8 and 10 hold. It follows that

Pr
󰀓󰀐󰀐󰀐θ̊g,t

󰀐󰀐󰀐 = 0, ∀t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
→ 1

as N → ∞.

Proof. The proof is almost the same as that of Theorem 3.3 in Qian and Su (2016).

Lemma S.8. Suppose that Assumptions 4, 7, 8 and 10 hold. It holds that, as N → ∞,

Pr(m̊g = m0
g, ∀g ∈ G) → 1,

and

Pr(T̊g,j = T 0
g,j, ∀j ∈ {1, . . . ,m0}, g ∈ G | m̊ = m0

g, ∀g ∈ G) → 1

Proof. The proof is almost the same as that of Corollary 3.4 in Qian and Su (2016).

We now obtain the asymptotic distribution of β̊. Let α̊g,j = β̊g,t for T
0
g,j ≤ t < T 0

g,j+1.

Lemma S.9. Suppose that Assumptions 4, 6, 7, 8 10 and S.1 hold. Let A be a diagonal

matrix whose diagonal elements are

(I1,1, . . . , I1,m0
1+1, I2,1, . . . , I2,m0

2+1, I3,1 . . . , IG−1,m0
G−1+1, IG,1, . . . , IG,m0

G+1). Let Π be a
󰁓G

g=1(m
0
g+

1)k ×
󰁓G

g=1(m
0
g + 1)k block diagonal matrix whose g-th diagonal block is a (m0

g + 1)k ×
(m0

g + 1)k diagonal matrix whose diagonal elements are
√
πg.

Conditional on m̊g = m0
g for all g ∈ G, we have, if (maxg∈G m0

g)
2/(Imin ming∈G Ng) → 0,

D
√
NA1/2(α̊− α̊0) →d N(0, DΣ−1

x Π−1/2ΩΠ−1/2Σ−1
x D′).

Proof. The proof of this lemma is similar to that of Theorem 3.5(i) in Qian and Su (2016)

and is thus omitted.
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S.5.3.3 Asymptotic properties of GAGFL under unknown group membership

Let

Q̂NT (β, γ) =
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβgi,t + x′

i,t−1βgi,t−1)
2 + λ

󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

Let

˜̂
QNT (β, γ) =

1

NT

N󰁛

i=1

T󰁛

t=2

(x′
it(β

0
g0i ,t

− βgi,t)− x′
i,t−1(β

0
g0i ,t−1 − βgi,t−1))

2

+ λ
󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

Lemma S.10. Suppose that Assumptions 7.1–4 hold.

sup
(β,γ)∈BGT×ΓG

󰀏󰀏󰀏Q̂NT (β, γ)− ˜̂
QNT (β, γ)

󰀏󰀏󰀏 = op(1).

Proof. Note that

Q̂NT (β, γ)− ˜̂
QNT (β, γ) = Q̇NT (β, γ)− Q̃NT (β, γ).

Lemma S.1 implies the desired result.

Lemma S.11. Suppose that Assumptions 4.1, 7, 8 and 10 hold.

dH(β̂, β
0) = op(1).

Proof. By Lemma S.10, we have

˜̂
Q(β̂, γ̂) = Q̂(β̂, γ̂) + op(1) ≤ Q̂(β0, γ0) + op(1) =

˜̂
Q(β0, γ0) + op(1).

Because Q̃(β, γ) is minimized at β = β0 and γ = γ0, we have

˜̂
Q(β̂, γ̂)− ˜̂

Q(β0, γ0) = op(1).
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On the other hand, we have

˜̂
Q(β, γ)− ˜̂

Q(β0, γ0)

=
1

NT

N󰁛

i=1

T󰁛

t=2

󰀓
x′
it(β

0
g0i ,t

− βgi,t)− x′
i,t−1(β

0
g0i ,t−1 − βgi,t−1)

󰀔2

+ λ
󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 − λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐β0
g,t − β0

g,t−1

󰀐󰀐

=
G󰁛

g=1

G󰁛

g̃=1

1

T

󰀃
β0
g − βg̃

󰀄′
MF (γ, g, g̃)

󰀃
β0
g − βg̃

󰀄

+ λ
󰁛

g∈G

󰁛

t∈T 0
m0

g,g

ẇg,t

󰀃
󰀂βg,t − βg,t−1󰀂 −

󰀐󰀐β0
g,t − β0

g,t−1

󰀐󰀐󰀄

+ λ
󰁛

t∈T 0c
m0

g,g

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

In the proof of Lemma S.2, we have shown that

G󰁛

g=1

G󰁛

g̃=1

1

T

󰀃
β0
g − βg̃

󰀄′
MF (γ, g, g̃)

󰀃
β0
g − βg̃

󰀄
≥ ρ̂F max

g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤󰀤
.

Note that ρ̂ is asymptotically bounded away from zero by Assumption 8.1.

We have, by the Jensen, triangular and CS inequalities,

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
λ
󰁛

g∈G

󰁛

t∈T 0
m0

g,g

ẇg,t

󰀃
󰀂βg,t − βg,t−1󰀂 −

󰀐󰀐β0
g,t − β0

g,t−1

󰀐󰀐󰀄
󰀏󰀏󰀏󰀏󰀏󰀏󰀏

≤λ
󰁛

g∈G

󰁛

t∈T 0
m0

g,g

ẇg,t

󰀐󰀐βg,t − βg,t−1 − (β0
g,t − β0

g,t−1)
󰀐󰀐

≤λ max
s∈T 0

m0
g,g

,g∈G
(ẇg,s)

󰁛

t∈T 0
m0

g,g

󰀐󰀐βg,t − βg,t−1 − (β0
g,t − β0

g,t−1)
󰀐󰀐

=Op

󰀣
λ

󰀣
󰁛

g∈G

m0
g

󰀤
J−κ
min

󰀤
= op(1).

where the last equality follows by Assumptions 7.1 and 4.1.
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Lastly note that

λ
󰁛

t∈T 0c
m0

g,g

ẇg,t 󰀂βg,t − βg,t−1󰀂 ≥ 0.

Therefore unless we have

max
g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
g,t − β̂g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1),

˜̂
Q(β, γ)− ˜̂

Q(β0, γ0) < op(1) does not hold.

We then follow the argument made in in the proof of Lemma S.2 to obtain

max
g̃∈G

󰀣
min
g∈G

󰀣
1

T

T󰁛

t=2

󰀐󰀐󰀐β0
g,t − β̂g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1).

We thus have the desired result.

As in the case for β̇, the above result implies that there exists a permutation σ such

that

1

T

T󰁛

t=2

󰀐󰀐󰀐β0
σ(g),t − β̂g,t

󰀐󰀐󰀐
2

= op(1)

and we take σ(g) = g by relabeling.

We observe that given β, the second term of Q̂NT (β, γ) does not affect the estimation

of γ. Therefore, ĝi(β) defined in (S.8) is also the estimate of gi given β even if Q̂NT (β, γ)

is our objective function. It follows that Lemma S.3 can apply for the GAGFL estimator.

Let

Q̂(β) =
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβĝi(β),t + x′

i,t−1βĝi(β),t−1)
2 + λ

󰁛

g∈G

T󰁛

t=2

ẇg,t 󰀂βg,t − βg,t−1󰀂 .

Note also that Q̂(β) = Q̂(β, γ̂(β)) and that β̂ = argminβ∈BGT Q̂(β).
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Proof of Lemma 2

Proof. We first evaluate the difference between Q̊(β) and Q̂(β). Note that

Q̊(β)− Q̂(β) = Q̌(β)− Q̇(β).

Thus by the proof of Lemma S.5 implies that

Q̊(β̂)− Q̂(β̂) = op(T
−δ).

Similarly, we have

Q̊(β̊)− Q̂(β̊) = op(T
−δ).

Next, we evaluate the difference between β̊ and β̂. By the definition of β̊ and β̂, we

have

0 ≤ Q̊(β̂)− Q̊(β̊) = Q̂(β̂)− Q̂(β̊) + op(T
−δ) ≤ op(T

−δ).

Thus we have

Q̊(β̂)− Q̊(β̊) = op(T
−δ).

We observe that

Q̊(β̂)− Q̊(β̊)

=
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβ̂g0i ,t

+ x′
i,t−1β̂g0i ,t−1)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̂g,t − β̂g,t−1

󰀐󰀐󰀐

− 1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβ̊g0i ,t

+ x′
i,t−1β̊g0i ,t−1)

2 − λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐

=
1

NT

N󰁛

i=1

T󰁛

t=2

(x′
it(β̊g0i ,t

− β̂g0i ,t
)− xi,t−1(β̊g0i ,t−1 − β̂g0i ,t−1))

2

+ 2
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβ̊g0i ,t

+ x′
i,t−1β̊g0i ,t−1)(x

′
it(β̊g0i ,t

− β̂g0i ,t
)− x′

i,t−1(β̊g0i ,t−1 − β̂g0i ,t−1))
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+ λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̂g,t − β̂g,t−1

󰀐󰀐󰀐− λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐 .

By the first order condition for β̊g,t, we have

− 2
1

NT

󰁛

g0i =g

(∆yit − x′
itβ̊g0i ,t

+ x′
i,t−1β̊g0i ,t−1)xit1{t > 1}

+ 2
1

NT

󰁛

g0i =g

(∆yi,t+1 − x′
i,t+1β̊g0i ,t

+ x′
itβ̊g0i ,t

)xit1{t < T}

+ λẇg,teg,t − λẇg,t+1eg,t+1 = 0,

where eg,1 = eg,T+1 = 0, for 2 ≤ t ≤ T , eg,t = (β̊g,t−β̊g,t−1)/
󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐 if β̊g,t−β̊g,t−1 ∕= 0

and 󰀂eg,t󰀂 ≤ 1 otherwise. We thus have

2
1

NT

N󰁛

i=1

T󰁛

t=2

(∆yit − x′
itβ̊g0i ,t

+ x′
i,t−1β̊g0i ,t−1)(x

′
it(β̊g0i ,t

− β̂g0i ,t
)− x′

i,t−1(β̊g0i ,t−1 − β̂g0i ,t−1))

=λ
󰁛

g∈G

T󰁛

t=1

(ẇg,teg,t − ẇg,t+1eg,t+1)
′(β̊g0i ,t

− β̂g0i ,t
)

=λ
󰁛

g∈G

T󰁛

t=2

ẇg,te
′
g,t((β̊g0i ,t

− β̊g0i ,t−1)− (β̂g0i ,t
− β̂g0i ,t−1)).

Let Tmg ,g be the set of t such that β̊g,t − β̊g,t−1 ∕= 0 and T c
mg ,g = {2, . . . , T}\Tmg ,g.

We have

λ
󰁛

g∈G

T󰁛

t=2

ẇg,te
′
g,t((β̊g0i ,t

− β̊g0i ,t−1)− (β̂g0i ,t
− β̂g0i ,t−1))

+ λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̂g,t − β̂g,t−1

󰀐󰀐󰀐− λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐

=λ
󰁛

g∈G

󰁛

t∈T c
mg,g

ẇg,t

󰀓󰀐󰀐󰀐β̂g,t − β̂g,t−1

󰀐󰀐󰀐− e′g,t(β̂g,t − β̂g,t−1)
󰀔

+ λ
󰁛

g∈G

󰁛

t∈Tmg,g

ẇg,t

󰀳

󰁃
󰀐󰀐󰀐β̂g,t − β̂g,t−1

󰀐󰀐󰀐− (β̊g,t − β̊g,t−1)
′(β̂g,t − β̂g,t−1)󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐

󰀴

󰁄 ≥ 0,
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where the last inequality follows by the CS inequality. We thus have

Q̊(β̂)− Q̊(β̊) ≥ 1

NT

N󰁛

i=1

T󰁛

t=2

(x′
it(β̊g0i ,t

− β̂g0i ,t
)− xi,t−1(β̊g0i ,t−1 − β̂g0i ,t−1))

2

=
1

T

󰁛

g∈G

(β̊g − β̂g)
′MF (γ0, g, g)(β̊g − β̂g)

≥ρ̂
1

T

󰁛

g∈G

󰀐󰀐󰀐β̂g − β̊g

󰀐󰀐󰀐
2

.

We thus have, by (S.10) and Assumption 8.1,

1

T

󰁛

g∈G

󰀐󰀐󰀐β̂g − β̊g

󰀐󰀐󰀐
2

= op(T
−δ).

This implies that

󰀐󰀐󰀐β̂g,t − β̊g,t

󰀐󰀐󰀐
2

= op(T
1−δ)

for any δ. Thus we have the desired result.

Proof of Theorem S.1

Proof. Since β̊ minimizes Q̂(β, γ0), β̊ = β̂ if γ̂ = γ0. We note that

Pr(γ̂ ∕= γ0) = Pr

󰀕
max
1≤i≤N

1{ĝi(β̂) ∕= g0i } = 1

󰀖
≤

N󰁛

i=1

E
󰀓
1{ĝi(β̂) ∕= g0i }

󰀔
.

By Lemmas 2 and S.6, we have Pr(β̂ ∈ Nη) → 1 for any η. Together with this, the argument

made in the proof of Lemma S.3 shows that max1≤i≤N E
󰀓
1{ĝi(β̂) ∕= g0i }

󰀔
= O(T−δ) for

any δ > 0. This means that

Pr(γ̂ ∕= γ0) ≤ N max
1≤i≤N

E
󰀓
1{ĝi(β̂) ∕= g0i }

󰀔
= o(NT−δ)

for any δ. Thus under the condition of the theorem, by Lemma S.7, we have

Pr
󰀓󰀐󰀐󰀐θ̂g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
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≤Pr
󰀓󰁱󰀐󰀐󰀐θ̂g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰁲
,
󰀋
γ̂ = γ0

󰀌󰀔
+ Pr

󰀃
γ̂ ∕= γ0

󰀄

=Pr
󰀓󰁱󰀐󰀐󰀐θ̊g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰁲
,
󰀋
γ̂ = γ0

󰀌󰀔
+ Pr

󰀃
γ̂ ∕= γ0

󰀄

≤Pr
󰀓󰀐󰀐󰀐θ̊g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
+ Pr

󰀃
γ̂ ∕= γ0

󰀄
→ 0.

We therefore has the desired result.

Proof of Theorem S.2

Proof. Given Lemma 2 and Theorem S.1, the proof is based on an argument essentially

identical to the proof of Corollary 3.4 in Qian and Su (2016) and is thus omitted.

Proof of Theorem S.3

Proof. The theorem holds by Lemmas 2 and S.9.

S.6 Models with a subset of coefficients fully time

varying

In this section, we provide theoretical analysis of the GAGFL estimator applied to models

in which a subset of coefficients are fully time varying.

We divide the set of regressors and the coefficients such that xit = (x′
1,it, x

′
2,it)

′ and

βg,t = (β′
1,g,t, β

′
2,g,t)

′. The model is written as

yit = x′
1,itβ1,g,t + x′

1,itβ2,g,t + 󰂃it.

We assume that β1,g,t is fully time varying and β2,g,t may exhibit structural breaks. The

GAGFL objective function is modified such that the penalty part includes only β2,g,t:

1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβgi,t)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 ,
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where

ẇ2,g,t = 󰀂β2,g,t − β2,g,t−1󰀂−κ .

S.6.1 Assumptions

We first present assumptions. We use the same first set of assumptions, namely Assump-

tions 1-3, as those used for our main algorithm. However, we slightly modify the second set

of assumptions that are related to structural breaks. The modified assumptions concern

β2,g,t only.

Let J2,min = ming∈G,1≤j≤m0
g
󰀂α2,g,j+1 − α2,g,j󰀂.

Assumption S.2.

1.
√
NTλ

󰀓󰁓
g∈G m0

g

󰀔
J−κ
2,min = Op(1).

2.
√
NTλN−κ/2 →p ∞.

3.
√
NJ2,min → ∞.

Let k1 and k2 be the dimensions of x1,it and x2,it respectively. Let Σx,g,j be a (Ig,jk1 +

k2)× (Ig,jk1 + k2) matrix whose upper-left block is a block diagonal matrix of

plimN→∞
󰁓

gi=g x1,itx
′
1,it/Ng for t = T 0

g,j, . . . , T
0
g,j+1−1, whose upper-right block is a matrix

consisting of Ig,j blocks with each block being plimN→∞
󰁓

gi=g x1,itx
′
2,it/(Ng

󰁳
Ig,j), whose

lower-left block is the transpose of the upper-right block, and whose lower-right block is

plimN,T→∞
󰁓

gi=g

󰁓T 0
g,j+1−1

t=T 0
g,j

x2,itx
′
2,it/(NgIg,j). Let Σx,g be a block diagonal matrix whose

j-th block is Σx,g,j. Lastly, Σx is a block diagonal matrix whose g-th block is Σx,g.

Let dg,j,NT =
󰁓

gi=g(x
′
1,iT 0

g,j
󰂃iT 0

g,j
, . . . , x′

1,i,T 0
g,j+1−1

󰂃i,T 0
g,j+1−1,

󰁓T 0
g,j+1−1

t=T 0
g,j

x′
2,it󰂃it/

󰁳
Ig,j)/

󰁳
Ng.

Let dg,NT = (dg,0,NT , . . . , dg,m0
g ,NT ). Lastly, let dNT = (d1,NT , . . . , dG,NT ). Let Ω =

limN,T∞ E(d′NTdNT ).

Assumption S.3. Suppose that Σx and Ω are well-defined, their minimum eigenvalues

are bounded away from zero and their maximum eigenvalues are bounded uniformly over

T . Ng/N → πg > 0 for any g ∈ G. For a l × (GTk1 +
󰁓G

g=1(m
0
g + 1)k2) matrix D,

where l does not depend on T and limT→∞ DΩD′ exists and is positive definite, Dd′NT →d

N(0, limT→∞ DΩD′).

Assumption S.4. N
󰁓G

g=1(m
0
g)λ

2I−1
minJ

−2κ
2,min = op(1).
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S.6.2 Theoretical results

This section presents the theoretical results about the asymptotic behaviors of the GAGFL

estimator when only a subset of the coefficients are penalized. A set of very similar results

to those in the standard case are obtained.

Lemma S.12. Suppose that Assumptions 1, 2, and 3 are satisfied. Suppose also that

Ng/N → πg for some 0 < πg < 1 for all g ∈ G. As N, T → ∞, for any δ > 0, it holds that

β̂g,t = β̊g,t + op(T
−δ),

for all g and t.

Theorem S.5. Suppose that Assumptions 1, 2, 3, and S.2 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. It follows that

Pr
󰀓󰀐󰀐󰀐θ̂2,g,t

󰀐󰀐󰀐 = 0, ∀t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
→ 1

as N, T → ∞ with N/T δ → 0 for some δ.

Theorem S.6. Suppose that Assumptions 1, 2, 3, and S.2 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. It holds that, as N, T → ∞ with N/T δ → 0 for some δ > 0,

Pr(m̂g = m0
g, ∀g ∈ G) → 1,

and

Pr
󰀓
T̂g,j = T 0

g,j, ∀j ∈ {1, . . . ,m0
g}, g ∈ G | m̂g = m0

g, ∀g ∈ G
󰀔
→ 1.

Theorem S.7. Suppose that Assumptions 1, 2, 3, S.2, S.3 and S.4 hold. Suppose that

Ng/N → πg > 0 for any g ∈ G. Let A be a diagonal matrix whose diagonal elements are

Ag for g = 1, . . . , G and Ag is a diagonal matrix whose elements are

((ιk1 , Ig,1ιk2), . . . , (ιk1 , Ig,m0
1+1ιk2) where ιl is the l-dimensional row vector of ones. Let Π be

a (TGk1 +
󰁓G

g=1(m
0
g +1)k2)× (TGk1 +

󰁓G
g=1(m

0
g +1)k2) block diagonal matrix whose g-th

diagonal block is an (m0
g + 1)k × (m0

g + 1)k diagonal matrix with the elements being πg.

Conditional on m̂g = m0
g for all g ∈ G, we have, if (maxg∈G m0

g)
2/(Imin ming∈G Ng) → 0,

D
√
NA1/2(α̂− α0) →d N(0, DΣ−1

x Π−1/2ΩΠ−1/2Σ−1
x D′).
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S.6.3 Proofs

The proofs are almost identical to those for the main model. Note that the initial estimator,

β̇, is identical to the standard case and we start the proofs from the analysis of the AGFL

estimator.

We firs consider the estimator under the true group membership strucutre. Let

Q̊(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβg0i ,t

)2 + λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 ,

and that β̊ = argminβ∈BGT Q̊(β).

Lemma S.13. Suppose that Assumptions 1.3, 2.1 and S.2.1 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. We have, as N, T → ∞,

1

T

󰀐󰀐󰀐β̊g − β0
g

󰀐󰀐󰀐
2

= Op

󰀕
1

N

󰀖

for any g ∈ G. We also have, as N, T → ∞,

β̊g,t − β0
g,t = Op

󰀕
1√
N

󰀖
.

Proof. This lemma contains two parts. We first consider the first part regarding the norm

of coefficient difference. Let bt = N−1/2(βg,t − β0
g,t) and b = (b′1, · · · b′T )′ = N−1/2(βg − β0

g ).

Let also b2,t = N−1/2(β2,g,t − β0
2,g,t) and b∗2 = (b′2,1, . . . , b

′
2,T )

′. Let

Qg(βg) =
1

NT

󰁛

g0i =g

T󰁛

t=1

(yit − x′
itβg,t)

2 + λ

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 .

Note that β̊g = argminQg(βg).

We have

N(Qg(βg)−Qg(β
0
g ))

=
1

T

󰁛

g0i =g

T󰁛

t=1

(yit − x′
itβg,t)

2 +Nλ

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂
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− 1

T

󰁛

g0i =g

T󰁛

t=1

(yit − x′
itβ

0
g,t)

2 −Nλ

T󰁛

t=2

ẇ2,g,t

󰀐󰀐β0
2,g,t − β0

2,g,t−1

󰀐󰀐

=
1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt −

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt

+Nλ
󰁛

t∈T 0
m0

g,g

ẇ2,g,t

󰀃󰀐󰀐β0
2,g,t − β0

2,g,t−1 +N−1/2(b2,t − b2,t−1)
󰀐󰀐−

󰀐󰀐β0
2,g,t − β0

2,g,t−1

󰀐󰀐󰀄

+Nλ
󰁛

t∈T 0c
m0

g,g

ẇ2,g,t

󰀐󰀐N−1/2(b2,t − b2,t−1)
󰀐󰀐 . (S.11)

We consider the four terms on the right hand side of the last equality of (S.11) in turn.

For the first term, we note, by Assumption 2.1, that

1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt =

1

T
b′M(γ0, g, g)b ≥ ρ̂

1

T
󰀂b󰀂2.

For the second term, we have

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt = Op

󰀕
1√
T
󰀂b󰀂

󰀖
,

by Assumption 1.3. Next, we consider the third term. We have by the Jensen, triangular

and CS inequalities,

Nλ
󰁛

t∈T 0
m0

g,g

ẇ2,g,t

󰀃󰀐󰀐β0
2,g,t − β0

2,g,t−1 +N−1/2(b2,t − b2,t−1)
󰀐󰀐−

󰀐󰀐β0
2,g,t − β0

2,g,t−1

󰀐󰀐󰀄

≤Nλ
󰁛

t∈T 0
m0

g,g

ẇ2,g,t

󰀐󰀐N−1/2(b2,t − b2,t−1)
󰀐󰀐

≤m0
√
Nλ max

s∈T 0
m0

g,g

(ẇ2,g,s)
1

m0

󰁛

t∈T 0
m0

g,g

󰀂b2,t − b2,t−1󰀂

≤m0
√
Nλ max

s∈T 0
m0

g,g

(ẇ2,g,s)

󰀳

󰁅󰁃
1

m0

󰁛

t∈T 0
m0

g,g

󰀂b2,t − b2,t−1󰀂2

󰀴

󰁆󰁄

1/2
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≤2
√
m0Nλ max

s∈T 0
m0

g,g

(ẇ2,g,s)󰀂b∗2󰀂.

By Assumption S.2.1, this third term is Op(T
−1/2󰀂b󰀂). Lastly, we consider the fourth term,

and we have

Nλ
󰁛

t∈T 0c
m0

g,g

ẇ2,g,t

󰀐󰀐N−1/2(b2,t − b2,t−1)
󰀐󰀐 ≥ 0.

Summing the four parts up, we have

0 ≥ N(Qg(βg)−Qg(β
0
g )) ≥ ρ̂

1

T
󰀂b󰀂2 −Op(T

−1/2󰀂b󰀂).

If 󰀂b󰀂2/T is not stochastically bounded, then the first term, which is positive, dominates

and the first inequality does not hold asymptotically. We thus have the desired result.

Next, we consider the second part regarding the difference between two coefficient

vectors. The above argument implies that

0 ≥ N(Qg(βg)−Qg(β
0
g )) ≥

1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt −

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt

−
√
Nλ max

s∈T 0
m0

g,g

(ẇ2,g,s)
󰁛

t∈T 0
m0

g,g

󰀂b2,t − b2,t−1󰀂 .

We thus have

0 ≥ N(Qg(βg)−Qg(β
0
g )) ≥

1

NT

󰁛

g0i =g

T󰁛

t=1

b′txitx
′
itbt −

2√
NT

󰁛

g0i =g

T󰁛

t=1

󰂃itx
′
itbt

−
√
Nλ max

s∈T 0
m0

g,g

(ẇ2,g,s)
T󰁛

t=1

2 󰀂b2,t󰀂 .

The right hand side of the inequality can be analyzed for each t. If |bt| is not Op(1), then

it can be seen that it cannot be optimal. The desired result thus follows.

Let θ̊2,g,1 = β̊2,g,1 and θ̊2,g,t = β̊2,g,t − β̊2,g,t−1.

Lemma S.14. Suppose that Assumptions 1.3, 2.1, 1.5, and S.2 hold. Suppose that Ng/N →
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πg > 0 for any g ∈ G. It follows that

Pr
󰀓󰀐󰀐󰀐θ̊2,g,t

󰀐󰀐󰀐 = 0, ∀t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
→ 1

as N → ∞.

Proof. The proof is by contradiction. Suppose that ∃(t, g) such that 2 ≤ t ≤ T − 1 and

θ̊2,g,t ∕= 0 for sufficiently large N . Note that 󰀂θ󰀂 is differentiable at θ̊2,g,t if θ̊2,g,t ∕= 0. We

thus have the following first order condition (FOC) for β̊2,g,t:

−2
1

NT

󰁛

g0i =g

(yit − x′
itβ̊g,t)xit + λẇ2,g,t

θ̊2,g,t

󰀂θ̊2,g,t󰀂
− λẇ2,g,t+1et+1 = 0,

where et+1 = θ̊2,g,t+1/󰀂θ̊2,g,t+1󰀂 if θ̊2,g,t+1 ∕= 0 and 󰀂et+1󰀂 ≤ 1 otherwise. Multiplying both

sides of the equation by
√
NT and use yit = x′

itβ
0
g0i ,t

+ 󰂃it, we have

2
1√
N

󰁛

g0i =g

xitx
′
it(β̊g,t − β0

g,t)− 2
1√
N

󰁛

g0i =g

󰂃itx2,it

+
√
NTλẇ2,g,t

θ̊2,g,t

󰀂θ̊2,g,t󰀂
−

√
NTλẇ2,g,t+1et+1 = 0.

The first term is Op(1) by Lemma S.13 and Assumption 1.5. The second term is Op(1)

by Assumption 1.3. For the third term, we observe that the absolute value of at least

one element of θ̊2,g,t/󰀂θ̊2,g,t󰀂 exceeds 1/
√
k, and that ẇ−1

2,g,t = Op(N
−κ/2) because t ∈ T 0c

m0
g ,g
.

Therefore, the third term is Op(
√
NTλN−κ/2/

√
k) and this tends to infinity by Assumption

S.2.2.

We now consider the term
√
NTλẇ2,g,t+1et+1. Suppose that t+1 ∈ T 0

m0
g ,g
. In this case,

ẇ2,g,t+1 = Op(J
−κ
2,min). This and Assumption S.2.1 implies that

√
NTλẇ2,g,tet+1 = Op(1).

In this case, the third term explodes but other terms are stochastically bounded, and the

first order condition cannot hold.

Next, we consider the case where t + 1 ∈ T 0c
m0

g ,g
. We note that from the argument in

the previous paragraph, if t = T 0
g,j − 1 ∈ T 0c

m0
g ,g

for some j, then Pr(󰀂θ̊2,g,t󰀂 = 0) → 1

and
√
NTλẇ2,g,t+1et+1 = Op(1). This implies that for t = T 0

g,j − 2 ∈ T 0c
m0

g ,g
, Pr(󰀂θ̊2,g,t󰀂 =

0) → 1 and
√
NTλẇ2,g,t+1et+1 = Op(1) too. Applying this argument recursively until

t = T 0
g,j−1 + 1 ∈ T 0c

m0
g ,g
, we have for all t ∈ T 0c

m0
g ,g
, Pr(󰀂θ̊2,g,t󰀂 = 0) → 1.

Lastly, we consider the case in which t = T . In this case, the first order condition for
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β2,g,t is

2
1√
N

󰁛

g0i =g

xiTx
′
iT (β̊g,T − β0

g,T )− 2
1√
N

󰁛

g0i =g

󰂃iTx2,iT +
√
NTλẇ2,g,T eT = 0,

and there is no fourth term. We can apply the argument above and obtain Pr(󰀂θ̊2,g,t󰀂 =

0) → 1.

Lemma S.15. Suppose that Assumptions 1.3, 2.1, 1.5, and S.2 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. It holds that, as N → ∞,

Pr(m̊g = m0
g, ∀g ∈ G) → 1,

and

Pr(T̊g,j = T 0
g,j, ∀j ∈ {1, . . . ,m0}, g ∈ G | m̊g = m0

g, ∀g ∈ G) → 1

Proof. The proof is based on an argument essentially identical to the proof of Corollary

3.4 in Qian and Su (2016) and is thus omitted.

Recall that α̊2,g,j = β̊2,g,t for T
0
g,j ≤ t < T 0

g,j+1.

Lemma S.16. Suppose that Assumptions 1.3, 2.1, 1.5, S.2, S.3 and S.4 hold. Suppose

that Ng/N → πg > 0 for any g ∈ G. Let A and Π be as defined in Theorem S.7.

Conditional on m̊g = m0
g for all g ∈ G, we have, if (maxg∈G m0

g)
2/(Imin ming∈G Ng) → 0,

D
√
NA1/2(α̊− α̊0) →d N(0, DΣ−1

x Π−1/2ΩΠ−1/2Σ−1
x D′).

Proof. We note that α̊g,j satisfies the following FOC:

1

NT

󰁛

g0i =g

(yit − x′
itα̊g,j)x1,it for t = T 0

g,j, . . . , T
0
g,j+1 − 1,

1

NT

󰁛

g0i =g

T 0
g,j+1−1󰁛

t=T 0
g,j

(yit − x′
itα̊g,j)x2,it +Rg,j,

where Rg,1 = −λẇ2,g,T 0
g,1
eT 0

g,1
, Rg,j = λ(ẇ2,g,T 0

g,j−1
eT 0

g,j−1
− ẇ2,g,T 0

g,j
eT 0

g,j
) for 2 ≤ j ≤ m0

g and

Rg,m0
g+1 = λẇ2,g,T 0

m0
g

eT 0
m0

g

.
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It is thus sufficient to show that ||R|| is op(1) where R is a vector of Rg,js. We have

󰀂R󰀂2

≤λ2

G󰁛

g=1

󰀳

󰁃I−1
g,1

󰀐󰀐󰀐ẇ2,g,T 0
g,1
eg,T 0

g,1

󰀐󰀐󰀐
2

+

m0
g󰁛

j=2

I−1
g,j

󰀐󰀐󰀐ẇ2,g,T 0
g,j−1

eg,T 0
g,j−1

󰀐󰀐󰀐
2

+ I−1
g,m0

g+1

󰀐󰀐󰀐󰀐ẇ2,g,T 0
m0

g,1
eg,T 0

m0
g,1

󰀐󰀐󰀐󰀐
2
󰀴

󰁄

≤4
G󰁛

g=1

(m0
g + 1)λ2I−1

min max
g∈G,t∈T 0

m0
g,g

󰀂ẇ2,g,t󰀂2

=Op

󰀣
G󰁛

g=1

(m0
g)λ

2I−1
minJ

−2κ
2,min

󰀤
.

By Assumptions S.3 and S.4, the second term is op(1).

Let

Q̂NT (β, γ) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβgi,t)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 .

and

˜̂
QNT (β, γ) =

1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β

0
g0i ,t

− βgi,t))
2 + λ

󰁛

g∈G

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 .

Lemma S.17. Suppose that Assumption 1 hold.

sup
(β,γ)∈BGT×ΓG

󰀏󰀏󰀏Q̂NT (β, γ)− ˜̂
QNT (β, γ)

󰀏󰀏󰀏 = op(1).

Proof. Note that

Q̂NT (β, γ)− ˜̂
QNT (β, γ) = Q̇NT (β, γ)− Q̃NT (β, γ).

Lemma 3 implies the desired result.

Lemma S.18. Suppose that Assumptions 1, 2 and S.2.1 hold. Suppose that Ng/N → πg >
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0 for any g ∈ G. It holds that as N, T → ∞,

dH(β̂, β
0) = op(1).

Proof. From Lemma S.17, we have

˜̂
Q(β̂, γ̂) = Q̂(β̂, γ̂) + op(1) ≤ Q̂(β0, γ0) + op(1) =

˜̂
Q(β0, γ0) + op(1).

Because Q̃(β, γ) is minimized at β = β0 and γ = γ0, we have

˜̂
Q(β̂, γ̂)− ˜̂

Q(β0, γ0) = op(1).

On the other hand, we have

˜̂
Q(β, γ)− ˜̂

Q(β0, γ0)

=
1

NT

N󰁛

i=1

T󰁛

t=1

󰀓
x′
it(β

0
g0i ,t

− βgi,t)
󰀔2

+ λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀃
󰀂β2,g,t − β2,g,t−1󰀂 −

󰀐󰀐β0
2,g,t − β0

2,g,t−1

󰀐󰀐󰀄

=
G󰁛

g=1

G󰁛

g̃=1

1

T

󰀃
β0
g − βg̃

󰀄′
M(γ, g, g̃)

󰀃
β0
g − βg̃

󰀄

+ λ
󰁛

g∈G

󰁛

t∈T 0
m0

g,g

ẇ2,g,t

󰀃
󰀂β2,g,t − β2,g,t−1󰀂 −

󰀐󰀐β0
2,g,t − β0

2,g,t−1

󰀐󰀐󰀄

+ λ
󰁛

g∈G

󰁛

t∈T 0c
m0

g,g

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 . (S.12)

We now examine the three terms on the left hand side of (S.12) in turn. For the first

term, in the proof of Lemma 4, we have shown that

G󰁛

g=1

G󰁛

g̃=1

1

T

󰀃
β0
g − βg̃

󰀄′
M(γ, g, g̃)

󰀃
β0
g − βg̃

󰀄
≥ ρ̂max

g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐β0
g,t − βg̃,t

󰀐󰀐2

󰀤󰀤
.

Note that ρ̂ is asymptotically bounded away from zero by Assumption 2.1.
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For the second term, we have, by the Jensen, triangular and CS inequalities,

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
λ
󰁛

g∈G

󰁛

t∈T 0
m0

g,g

ẇ2,g,t

󰀃
󰀂β2,g,t − β2,g,t−1󰀂 −

󰀐󰀐β0
2,g,t − β0

2,g,t−1

󰀐󰀐󰀄
󰀏󰀏󰀏󰀏󰀏󰀏󰀏

≤λ
󰁛

g∈G

󰁛

t∈T 0
m0

g,g

ẇ2,g,t

󰀐󰀐β2,g,t − β2,g,t−1 − (β0
2,g,t − β0

2,g,t−1)
󰀐󰀐

≤λ max
s∈T 0

m0
g,g

,g∈G
(ẇ2,g,s)

󰁛

t∈T 0
m0

g,g

󰀐󰀐β2,g,t − β2,g,t−1 − (β0
2,g,t − β0

2,g,t−1)
󰀐󰀐

=Op

󰀣
λ

󰀣
󰁛

g∈G

m0
g

󰀤
J−κ
2,min

󰀤
= op(1).

where the last equality follows from Assumptions 1.1 and S.2.1.

Finally, for the third term, note that

λ
󰁛

t∈T 0c
m0

g,g

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 ≥ 0

Therefore unless we have

max
g∈G

󰀣
min
g̃∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
g,t − β̂g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1),

˜̂
Q(β, γ)− ˜̂

Q(β0, γ0) < op(1) does not hold. We then follow the argument made in the proof

of Lemma 4 to obtain

max
g̃∈G

󰀣
min
g∈G

󰀣
1

T

T󰁛

t=1

󰀐󰀐󰀐β0
g,t − β̂g̃,t

󰀐󰀐󰀐
2
󰀤󰀤

= op(1).

We thus have the desired result.

As in the case for β̇, the above result implies that there exists a permutation σ such

that

1

T

T󰁛

t=1

󰀐󰀐󰀐β0
σ(g),t − β̂g,t

󰀐󰀐󰀐
2

= op(1)
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and we take σ(g) = g by relabeling. Moreover, we observe that given β, the second term of

Q̂NT (β, γ) does not affect the estimation of γ. Therefore, ĝi(β) defined in (S.3) is also the

estimate of gi given β even if Q̂NT (β, γ) is our objective function. It follows that Lemma

5 applies for the GAGFL estimator.

S.6.3.1 Proof of Lemma S.12

Let

Q̂(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβĝi(β),t)

2 + λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t 󰀂β2,g,t − β2,g,t−1󰀂 .

Note also that Q̂(β) = Q̂(β, γ̂(β)) and that β̂ = argminβ∈BGT Q̂(β).

Proof. We first evaluate the difference between Q̊(β) and Q̂(β). Note that

Q̊(β)− Q̂(β) = Q̌(β)− Q̇(β).

Thus the proof of Lemma 7 implies that

Q̊(β̂)− Q̂(β̂) = op(T
−δ).

Similarly, we have

Q̊(β̊)− Q̂(β̊) = op(T
−δ).

Next, we evaluate the difference between β̊ and β̂. By the definition of β̊ and β̂, we

have

0 ≤ Q̊(β̂)− Q̊(β̊) = Q̂(β̂)− Q̂(β̊) + op(T
−δ) ≤ op(T

−δ).

Thus we have

Q̊(β̂)− Q̊(β̊) = op(T
−δ). (S.13)

92



We observe that

Q̊(β̂)− Q̊(β̊) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̂g0i ,t

)2 + λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀐󰀐󰀐β̂2,g,t − β̂2,g,t−1

󰀐󰀐󰀐

− 1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̊g0i ,t

)2 − λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀐󰀐󰀐β̊2,g,t − β̊2,g,t−1

󰀐󰀐󰀐

=
1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β̊g0i ,t

− β̂g0i ,t
))2

+ 2
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̊g0i ,t

)(x′
it(β̊g0i ,t

− β̂g0i ,t
))

+ λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀐󰀐󰀐β̂2,g,t − β̂2,g,t−1

󰀐󰀐󰀐− λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀐󰀐󰀐β̊2,g,t − β̊2,g,t−1

󰀐󰀐󰀐 .

By the first order condition for β̊g,t, we have

− 2
1

NT

󰁛

g0i =g

(yit − x′
itβ̊g0i ,t

)x1,it = 0,

− 2
1

NT

󰁛

g0i =g

(yit − x′
itβ̊g0i ,t

)x2,it + λẇ2,g,teg,t − λẇ2,g,t+1eg,t+1 = 0,

where eg,1 = eg,T+1 = 0, for 2 ≤ t ≤ T , eg,t = (β̊2,g,t − β̊2,g,t−1)/
󰀐󰀐󰀐β̊2,g,t − β̊2,g,t−1

󰀐󰀐󰀐 if

β̊2,g,t − β̊2,g,t−1 ∕= 0 and 󰀂eg,t󰀂 ≤ 1 otherwise. We thus have

2
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̊g0i ,t

)(x′
it(β̊g0i ,t

− β̂g0i ,t
))

=λ
󰁛

g∈G

T󰁛

t=1

(ẇ2,g,teg,t − ẇ2,g,t+1eg,t+1)
′(β̊2,g0i ,t

− β̂2,g0i ,t
)

=λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,te
′
g,t((β̊2,g0i ,t

− β̊2,g0i ,t−1)− (β̂2,g0i ,t
− β̂2,g0i ,t−1)).
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Let Tmg ,g be the set of t such that β̊g,t − β̊g,t−1 ∕= 0 and T c
mg ,g = {2, . . . , T}\Tmg ,g. We have

λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,te
′
g,t((β̊2,g0i ,t

− β̊2,g0i ,t−1)− (β̂g0i ,t
− β̂g0i ,t−1))

+ λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀐󰀐󰀐β̂2,g,t − β̂2,g,t−1

󰀐󰀐󰀐− λ
󰁛

g∈G

T󰁛

t=2

ẇ2,g,t

󰀐󰀐󰀐β̊2,g,t − β̊2,g,t−1

󰀐󰀐󰀐

=λ
󰁛

g∈G

󰁛

t∈T c
mg,g

ẇ2,g,t

󰀓󰀐󰀐󰀐β̂2,g,t − β̂2,g,t−1

󰀐󰀐󰀐− e′g,t(β̂2,g,t − β̂2,g,t−1)
󰀔

+ λ
󰁛

g∈G

󰁛

t∈Tmg,g

ẇ2,g,t

󰀳

󰁃
󰀐󰀐󰀐β̂2,g,t − β̂2,g,t−1

󰀐󰀐󰀐− (β̊g,t − β̊g,t−1)
′(β̂g,t − β̂g,t−1)󰀐󰀐󰀐β̊2,g,t − β̊2,g,t−1

󰀐󰀐󰀐

󰀴

󰁄 ≥ 0,

where the last inequality follows by the CS inequality. This implies that

Q̊(β̂)− Q̊(β̊) ≥ 1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β̊g0i ,t

− β̂g0i ,t
))2 =

1

T

󰁛

g∈G

(β̊g − β̂g)
′M(γ0, g, g)(β̊g − β̂g)

≥ρ̂
1

T

󰁛

g∈G

󰀐󰀐󰀐β̂g − β̊g

󰀐󰀐󰀐
2

.

Hence, by (S.13) and Assumption 2.1, we have that,

1

T

󰁛

g∈G

󰀐󰀐󰀐β̂g − β̊g

󰀐󰀐󰀐
2

= op(T
−δ),

which further implies that

󰀐󰀐󰀐β̂g,t − β̊g,t

󰀐󰀐󰀐
2

= op(T
1−δ)

for any δ. This gives the desired result.

S.6.3.2 Proof of Theorem S.5

Proof. As β̊ minimizes Q̂(β, γ0), β̊ = β̂ if γ̂ = γ0. We note that

Pr(γ̂ ∕= γ0) = Pr

󰀕
max
1≤i≤N

1{ĝi(β̂) ∕= g0i } = 1

󰀖
≤

N󰁛

i=1

E
󰀓
1{ĝi(β̂) ∕= g0i }

󰀔
.
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From Lemmas S.12 and S.13, we have Pr(β̂ ∈ Nη) → 1 for any η. Together with this,

the argument made in the proof of Lemma 5 shows that max1≤i≤N E
󰀓
1{ĝi(β̂) ∕= g0i }

󰀔
=

O(T−δ) for any δ > 0. This means that

Pr(γ̂ ∕= γ0) ≤ N max
1≤i≤N

E
󰀓
1{ĝi(β̂) ∕= g0i }

󰀔
= o(NT−δ)

for any δ. Thus under the condition of the theorem, from Lemma S.14, we have

Pr
󰀓󰀐󰀐󰀐θ̂2,g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔

≤Pr
󰀓󰁱󰀐󰀐󰀐θ̂2,g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰁲
,
󰀋
γ̂ = γ0

󰀌󰀔
+ Pr

󰀃
γ̂ ∕= γ0

󰀄

=Pr
󰀓󰁱󰀐󰀐󰀐θ̊2,g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰁲
,
󰀋
γ̂ = γ0

󰀌󰀔
+ Pr

󰀃
γ̂ ∕= γ0

󰀄

≤Pr
󰀓󰀐󰀐󰀐θ̊2,g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
+ Pr

󰀃
γ̂ ∕= γ0

󰀄
→ 0.

We therefore have the desired result.

S.6.3.3 Proof of Theorem S.6

Proof. Given Lemma S.12 and Theorem S.5, the proof is based on an argument essentially

identical to the proof of Corollary 3.4 in Qian and Su (2016) and is thus omitted.

S.6.3.4 Proof of Theorem S.7

Proof. The theorem holds using Lemmas S.12 and S.16.

S.7 Properties of the one-step estimator

Here we present the asymptotic properties of the one-step estimator β(0). We show that it

has the same asymptotic properties as those of the iterative estimator, β̂. In the following,

θ
(0)
g,t , m̂

(0)
g , T

(0)
g,j and α̂(0) denote the estimators of βg,t − βg,t−1, the number of breaks for

group g, the j-th break date for group g and α, based on β(0), respectively.
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S.7.1 Asymptotic results

The following results show that β(0) possesses the same asymptotic properties as those of

β̂.

Lemma S.19. Suppose that Assumptions 1, 2, and 3 are satisfied. Suppose also that

Ng/N → πg for some 0 < πg < 1 for all g ∈ G. As N, T → ∞, for any δ > 0, it holds that

β
(0)
g,t = β̊g,t + op(T

−δ),

for all g and t.

Theorem S.8. Suppose that Assumptions 1, 2, 3, and 4 hold. Suppose that Ng/N → πg >

0 for any g ∈ G. It follows that

Pr
󰀓󰀐󰀐󰀐θ̂(0)g,t

󰀐󰀐󰀐 = 0, ∀t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
→ 1

as N, T → ∞ with N/T δ → 0 for some δ.

Theorem S.9. Suppose that Assumptions 1, 2, 3, and 4 hold. Suppose that Ng/N → πg >

0 for any g ∈ G. It holds that, as N, T → ∞ with N/T δ → 0 for some δ > 0,

Pr(m̂(0)
g = m0

g, ∀g ∈ G) → 1,

and

Pr
󰀓
T̂

(0)
g,j = T 0

g,j, ∀j ∈ {1, . . . ,m0
g}, g ∈ G | m̂(0)

g = m0
g, ∀g ∈ G

󰀔
→ 1.

Theorem S.10. Suppose that Assumptions 1, 2, 3, 4, 5 and 6 hold. Suppose that Ng/N →
πg > 0 for any g ∈ G. Let A be a diagonal matrix whose diagonal elements are

(I1,1, . . . , I1,m0
1+1, I2,1, . . . , I2,m0

2+1, I3,1 . . . , IG−1,m0
G−1+1, IG,1, . . . , IG,m0

G+1). Let Π be a
󰁓G

g=1(m
0
g+

1)k ×
󰁓G

g=1(m
0
g + 1)k block diagonal matrix whose g-th diagonal block is an (m0

g + 1)k ×
(m0

g + 1)k diagonal matrix with the elements being πg.

Conditional on m̂g = m0
g for all g ∈ G, we have, if (maxg∈G m0

g)
2/(Imin ming∈G Ng) → 0,

D
√
NA1/2(α̂(0) − α0) →d N(0, DΣ−1

x Π−1/2ΩΠ−1/2Σ−1
x D′).
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S.7.2 Proofs

Note that β(0) can be written as

β(0) = argmin
β∈BNT

Q̂
(0)
NT (β) (S.14)

where

Q̂
(0)
NT (β) = Q̂NT (β, γ̇). (S.15)

Let

Q̇(0)(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβĝi(β̇),t

)2. (S.16)

S.7.2.1 Proof of Lemma S.19

Proof. The proof is very similar to the proof of Lemma 1 of the main text. The only

difference is that we consider ĝi(β̇) instead of ĝi(β)

We first evaluate the difference between Q̊(β) and Q̂(0)(β). Note that

Q̊(β)− Q̂(0)(β) = Q̌(β)− Q̇(0)(β).

We have

Q̌(β)− Q̇(0)(β) =
1

NT

N󰁛

i=1

T󰁛

t=1

1{ĝi(β̇) ∕= g0i }
󰀓
(yit − x′

itβg0i ,t
)2 − (yit − x′

itβĝi(β̇),t
)2
󰀔
.

Because β̇ is consistent from Lemmas 6 and 7, Lemma 5 implies that
󰁓N

i=1 1{ĝi(β̇) ∕=
g0i }/N = op(T

−δ). Thus, together with Assumptions 1.1, 1.3 and 1.5, we have

Q̊(β(0))− Q̂(0)(β(0)) = op(T
−δ).

Similarly, we have

Q̊(β̊)− Q̂(0)(β̊) = op(T
−δ).

Next, we evaluate the difference between β̊ and β(0). By the definition of β̊ and β(0),
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we have

0 ≤ Q̊(β(0))− Q̊(β̊) = Q̂(0)(β(0))− Q̂(0)(β̊) + op(T
−δ) ≤ op(T

−δ).

Thus we have

Q̊(β(0))− Q̊(β̊) = op(T
−δ). (S.17)

We observe that

Q̊(β(0))− Q̊(β̊) =
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ

(0)

g0i ,t
)2 + λ

󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β(0)
g,t − β

(0)
g,t−1

󰀐󰀐󰀐

− 1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̊g0i ,t

)2 − λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐

=
1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β̊g0i ,t

− β
(0)

g0i ,t
))2

+ 2
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̊g0i ,t

)(x′
it(β̊g0i ,t

− β
(0)

g0i ,t
))

+ λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β(0)
g,t − β

(0)
g,t−1

󰀐󰀐󰀐− λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐 .

By the first order condition for β̊g,t, we have

−2
1

NT

󰁛

g0i =g

(yit − x′
itβ̊g0i ,t

)xit + λẇg,teg,t − λẇg,t+1eg,t+1 = 0,

where eg,1 = eg,T+1 = 0, for 2 ≤ t ≤ T , eg,t = (β̊g,t−β̊g,t−1)/
󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐 if β̊g,t−β̊g,t−1 ∕= 0

and 󰀂eg,t󰀂 ≤ 1 otherwise. We thus have

2
1

NT

N󰁛

i=1

T󰁛

t=1

(yit − x′
itβ̊g0i ,t

)(x′
it(β̊g0i ,t

− β
(0)

g0i ,t
))

=λ
󰁛

g∈G

T󰁛

t=1

(ẇg,teg,t − ẇg,t+1eg,t+1)
′(β̊g0i ,t

− β
(0)

g0i ,t
)
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=λ
󰁛

g∈G

T󰁛

t=2

ẇg,te
′
g,t((β̊g0i ,t

− β̊g0i ,t−1)− (β
(0)

g0i ,t
− β

(0)

g0i ,t−1
)).

Let Tmg ,g be the set of t such that β̊g,t − β̊g,t−1 ∕= 0 and T c
mg ,g = {2, . . . , T}\Tmg ,g. We have

λ
󰁛

g∈G

T󰁛

t=2

ẇg,te
′
g,t((β̊g0i ,t

− β̊g0i ,t−1)− (β
(0)

g0i ,t
− β

(0)

g0i ,t−1
))

+ λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β(0)
g,t − β

(0)
g,t−1

󰀐󰀐󰀐− λ
󰁛

g∈G

T󰁛

t=2

ẇg,t

󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐

=λ
󰁛

g∈G

󰁛

t∈T c
mg,g

ẇg,t

󰀓󰀐󰀐󰀐β(0)
g,t − β

(0)
g,t−1

󰀐󰀐󰀐− e′g,t(β
(0)
g,t − β

(0)
g,t−1)

󰀔

+ λ
󰁛

g∈G

󰁛

t∈Tmg,g

ẇg,t

󰀳

󰁃
󰀐󰀐󰀐β(0)

g,t − β
(0)
g,t−1

󰀐󰀐󰀐−
(β̊g,t − β̊g,t−1)

′(β
(0)
g,t − β

(0)
g,t−1)󰀐󰀐󰀐β̊g,t − β̊g,t−1

󰀐󰀐󰀐

󰀴

󰁄 ≥ 0,

where the last inequality follows by the CS inequality. This implies that

Q̊(β(0))− Q̊(β̊) ≥ 1

NT

N󰁛

i=1

T󰁛

t=1

(x′
it(β̊g0i ,t

− β
(0)

g0i ,t
))2 =

1

T

󰁛

g∈G

(β̊g − β(0)
g )′M(γ0, g, g)(β̊g − β(0)

g )

≥ρ̂
1

T

󰁛

g∈G

󰀐󰀐󰀐β(0)
g − β̊g

󰀐󰀐󰀐
2

.

Hence, by (S.17) and Assumption 2.1, we have that,

1

T

󰁛

g∈G

󰀐󰀐󰀐β(0)
g − β̊g

󰀐󰀐󰀐
2

= op(T
−δ),

which further implies that

󰀐󰀐󰀐β(0)
g,t − β̊g,t

󰀐󰀐󰀐
2

= op(T
1−δ)

for any δ. This gives the desired result.
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S.7.2.2 Proof of Theorem S.8

Proof. This proof is very similar to that of Theorem 1 in the main text. The only difference

is that we consider γ̇ instead of γ̂.

As β̊ minimizes Q̂(β, γ0), β̊ = β(0) if γ̇ = γ0. We note that

Pr(γ̇ ∕= γ0) = Pr

󰀕
max
1≤i≤N

1{ĝi(β̇) ∕= g0i } = 1

󰀖
≤

N󰁛

i=1

E
󰀓
1{ĝi(β̇) ∕= g0i }

󰀔
.

From Lemmas 6 and 7, we have Pr(β̇ ∈ Nη) → 1 for any η. Together with this, the argu-

ment made in the proof of Lemma 5 shows that max1≤i≤N E
󰀓
1{ĝi(β̇) ∕= g0i }

󰀔
= O(T−δ)

for any δ > 0. This means that

Pr(γ̇ ∕= γ0) ≤ N max
1≤i≤N

E
󰀓
1{ĝi(β̇) ∕= g0i }

󰀔
= o(NT−δ)

for any δ. Thus under the condition of the theorem, from Lemma S.14, we have

Pr
󰀓󰀐󰀐󰀐θ̂(0)g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔

≤Pr
󰀓󰁱󰀐󰀐󰀐θ̂(0)g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰁲
,
󰀋
γ̇ = γ0

󰀌󰀔
+ Pr

󰀃
γ̇ ∕= γ0

󰀄

=Pr
󰀓󰁱󰀐󰀐󰀐θ̊g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰁲
,
󰀋
γ̇ = γ0

󰀌󰀔
+ Pr

󰀃
γ̇ ∕= γ0

󰀄

≤Pr
󰀓󰀐󰀐󰀐θ̊g,t

󰀐󰀐󰀐 ∕= 0, ∃t ∈ T 0c
m0

g ,g
, g ∈ G

󰀔
+ Pr

󰀃
γ̇ ∕= γ0

󰀄
→ 0.

We therefore have the desired result.

S.7.2.3 Proof of Theorem S.9

Proof. Given Lemma S.19 and Theorem S.8, the proof is based on an argument essentially

identical to the proof of Corollary 3.4 in Qian and Su (2016) and is thus omitted.

S.7.2.4 Proof of Theorem S.10

Proof. The theorem holds using Lemmas S.19 and 11.
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