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Abstract:

This paper offers a theoretical explanation for the stylized fact that forecast combi-
nations with estimated optimal weights often perform poorly in applications. The
properties of the forecast combination are typically derived under the assumption
that the weights are fixed, while in practice they need to be estimated. If the fact
that the weights are random rather than fixed is taken into account during the
optimality derivation, then the forecast combination will be biased (even when the
original forecasts are unbiased) and its variance is larger than in the fixed-weights
case. In particular, there is no guarantee that the ‘optimal’ forecast combination
will be better than the equal-weights case or even improve on the original forecasts.
We provide the underlying theory, some special cases, and a numerical illustration.
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1 Introduction

When several forecasts of the same event are available, it is natural to try and
find a (linear) combination of these forecasts which is ‘best’ in some sense. If
we define ‘best’ in terms of the mean squared error and if the variances of the
forecasts and their covariances are known, then optimal weights can be derived.
In practice, these (co)variances are not known and need to be estimated. This
leads to estimated optimal weights and an estimated optimal forecast combination.
Empirical evidence and extensive simulations show that the estimated optimal
forecast combination typically does not perform well, and that the arithmetic
mean often performs better. This empirical fact has become known as the ‘forecast
combination puzzle’.

The history of the puzzle is elegantly summarized in Graefe et al. (2014, Sec-
tion 4), and a rigorous attempt to explain it, using simulations and an empirical
example, was undertaken by Smith and Wallis (2009) who show that the effect of
the error in estimating the weights can be large, thus providing an empirical expla-
nation of the forecast puzzle. Smith and Wallis use the words ‘finite-sample’ error,
which suggests that this error may vanish asymptotically. But it is not so easy
to find an asymptotic justification for ignoring the noise generated by estimating
the weights. To begin with it is not clear what ‘asymptotic’ means here. What
goes to infinity? The number of forecasts? If so, then the number of weights also
goes to infinity. The number of observations underlying the total (but finite) set
of forecasts? That would make more sense, but it would be difficult to analyze.

In this paper we provide a theoretical explanation for the empirical and sim-
ulation results of Smith and Wallis (2009) and others. The key ingredient in our
approach is to acknowledge explicitly that the optimal weights should be derived
by explicitly taking the estimation step into account. In other words, the deriva-
tion and estimation of optimal weights are viewed as a joint effort, not as two
separate efforts. This approach differs from (almost) all previous research, not
only Bates and Granger (1969), but also later contributions, important and in-
sightful as they may be, such as Hansen (2008), Elliott (2011), Liang et al. (2011),
and Hsiao and Wan (2014). The separation of mathematical derivation and statis-
tical estimation can be quite dangerous. Such separations are still quite common
in econometrics, although their disadvantages have been highlighted, specifically
in the model-averaging literature which explicitly attempts to combine model se-
lection and estimation, so that uncertainty in the model selection procedure is not
ignored when reporting properties of the estimates; see for example Magnus and
De Luca (2014).

In order to highlight our main findings we first provide graphical illustrations
for the case of two forecasts, as analyzed in Bates and Granger (1969). We thus
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linearly combine two forecasts of an event µ:

yc = wy1 + (1− w)y2. (1)

If the weight w is considered to be fixed, then the forecast combination is un-
biased (E yc = µ) if the original forecasts are unbiased, and the variance of the
combination will be

var(yc) = w2σ2

1 + (1− w)2σ2

2 + 2w(1− w)ρσ1σ2, (2)

where σ2
1 and σ2

2 are the variances of y1 and y2 respectively and ρ = corr(y1, y2)
denotes the correlation.

σ2
2

σ2
1

w∗0 11/2

E F

R

Figure 1: Variance of forecast combination, two dimensions: fixed weights (dashed)
and random weights under normality (solid)

The variance is a quadratic function of w, as plotted in Figure 1 (dashed line).
At w = 0 we obtain σ2

2 ; at w = 1 we obtain σ2
1; and at w = 1/2 we obtain point

E. The optimum F is reached at w = w∗, the optimal weight giving the smallest
variance of the forecast combination.

Now suppose that the weights are estimated, so that they are random rather
than fixed. In the special case where (y1, y2, w) follows a trivariate normal distri-
bution, the combination is biased (even when the original forecasts are unbiased),
since

E yc = µ+ cov(w, y1 − y2), (3)

4



and the variance is given by

var(yc) = (Ew)2σ2

1 + (1− Ew)2σ2

2 + 2(Ew)(1− Ew)ρσ1σ2

+ var(w) var(y1 − y2) + (cov(w, y1 − y2))
2. (4)

In another special case where w is independent of (y1, y2), the combination is
unbiased and

var(yc) = (Ew)2σ2

1 + (1− Ew)2σ2

2 + 2(Ew)(1− Ew)ρσ1σ2

+ var(w) var(y1 − y2). (5)

In either case the variance is shifted upwards, as shown in Figure 1 (solid line).
The solid line gives the variance as a function of Ew and the optimum is reached
at the same point w∗ as before, but leading to a higher variance of the forecast
combination. We see that the equal-weights point at w = 1/2 (point E), though
not optimal with fixed weights, has a variance which is smaller than the optimum
with estimated weights (point R). This figure provides the essence of our answer
to the forecast combination puzzle.

σ2
2

σ2
1

w∗∗w∗0 1

F

R

Figure 2: Variance of forecast combination, two dimensions: random weights,
general case

The expressions in (4) and (5) concern special cases (normality and indepen-
dence, respectively). In general, when the weights are estimated, the combined
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forecast will be biased, as given in (3), with its variance given by

var(yc) = (Ew)2σ2

1 + (1− Ew)2σ2

2 + 2(Ew)(1− Ew)ρσ1σ2

+ E [(w − Ew)(y1 − y2) ((Ew)y1 + (1− Ew)y2 − µ)]

+ E[(w − Ew)2(y1 − y2)
2]− (cov(w, y1 − y2))

2. (6)

Compared to (4) and (5) there are now additional terms that shift and distort the
fixed-weights curve of Figure 1, and this is illustrated in Figure 2. The optimal
weight is now given by w∗∗ rather than by w∗. Note that if we would plot the mean
squared error rather than the variance, the conclusions would not be affected. The
three curves in Figures 1 and 2 provide the essence of this paper. The underlying
formulae will be derived in m rather than in two dimensions, but the story remains
the same.

The simplified setup presented above assumes that the event µ is nonrandom,
and it also does not include a constant term w0 in the combined forecast. Both
assumptions can be criticized, so we briefly address them here. If µ is random, we
define the forecast errors e1 = y1 − µ and e2 = y2 − µ. Including a constant term
in the combined forecast gives

yc = w0 + wy1 + (1− w)y2.

The forecast error of yc is then

ec = yc − µ = w0 + we1 + (1− w)e2.

Assume that the forecasts are unbiased, so that E e1 = E e2 = 0. Then we find, in
the case of fixed weights,

E ec = w0, var(ec) = w2σ2

1 + (1− w)2σ2

2 + 2w(1− w)ρσ1σ2,

as in (2), except that σ2
1 and σ2

2 now denote the variances of e1 and e2 and ρ =
corr(e1, e2). The mean squared error of ec is minimized for w0 = 0 and w = w∗, so
nothing changes. Now consider the case of random weights. Then,

E ec = Ew0 + cov(w, y1 − y2),

which vanishes for Ew0 = − cov(w, y1 − y2). Including an intercept thus absorbs
the bias. Regarding var(ec), this will be an expression like (6), but more com-
plicated because the variance and covariances involving w0 need to be included.
Since the essence of the story is not affected, we shall continue to assume that the
event µ is nonrandom and that the combined forecast does not include a constant
term. Only in our small Monte Carlo experiment in Section 6 we assume that µ
is random. We shall however work in m rather than in two dimensions.
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The remainder of this paper is organized as follows. In Section 2 we reiterate
the classical forecast combination problem in a multivariate setting assuming that
the weights are fixed. In Section 3 we analyze the properties of the forecast com-
bination when the weights are random and the estimation is explicitly taken into
account. Some special cases are considered in Section 4. Our explanation of the
puzzle is summarized in Section 5. Section 6 provides a numerical illustration, and
some concluding remarks are offered in Section 7.

2 Moments of the forecast combination: fixed

weights

Thus motivated, let y = (y1, . . . , ym)
′ be a vector of unbiased forecasts so that

E yj = µ for all j, and let w = (w1, . . . , wm)
′ be a vector of fixed (nonrandom)

weights constrained by
∑

j wj = 1. Assuming that y has a finite variance Σyy , we
obtain the mean and variance of the forecast combination yc = w′y as

E yc = µ, var(yc) = w′Σyyw. (7)

It is easy to show that the variance is minimized (as a function of w, under the
constraint

∑

j wj = 1) when w = w∗, where

w∗ =
Σ−1

yy ı

ı′Σ−1
yy ı

(8)

and ı denotes the vector of m ones. The optimal forecast is then y∗c = w∗′y and
its variance is

var(y∗c ) =
1

ı′Σ−1
yy ı

. (9)

These are well-established results; see Bates and Granger (1969) for the bivariate
case and Elliott (2011) for its multivariate extension.

Denote the diagonal elements of Σyy by σ2
1 , . . . , σ

2
m. Then, for each j,

var(y∗c ) ≤ σ2

j . (10)

This follows by considering the vectors aj = Σ
1/2
yy ej and b = Σ

−1/2
yy ı, where ej

denotes the m-dimensional vector with one in its j-th position and zeros elsewhere.
Then, by Cauchy-Schwarz,

1 = (e′jı)
2 = (a′jb)

2 ≤ (a′jaj)(b
′b) = (e′jΣyyej)(ı

′Σ−1

yy ı) = σ2

j/ var(y
∗
c ).

Hence the optimally combined forecast has smaller variance than each of the in-
dividual forecasts. Equality can occur for at most one of the individual forecasts,
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because Σyy is assumed to remain positive definite. Equality for the j-th fore-
cast occurs if and only if aj and b are linearly dependent, that is, if and only if
cov(yi, yj) = var(yj) for i = 1, . . . , m.

We note that we imposed the restriction that the weights add up to one, but
not that each weight lies between zero and one. If all covariances are zero so
that Σyy is diagonal, then the optimal weights are given by (1/σ2

j )/
∑

i(1/σ
2
i )

(j = 1, . . . , m), and these clearly lie between zero and one. But this holds only if
Σyy is a diagonal matrix. Even in the case where only one covariance is not zero,
say cov(yi, yj) = cov(yj, yi) 6= 0 for some i and j, the optimal weights w∗

i and w∗
j

do not necessarily lie between zero and one; they do if and only if

corr(yi, yj) <
min(σi, σj)

max(σi, σj)
.

Apparently, the combination of a high positive correlation with a high variation
in reliability forces the optimal weights outside the (0, 1) interval. Of course, it is
possible to choose a positive definite matrix, say V , such that the components of
V −1ı are all positive, for example the diagonal matrix V = diag(σ2

1, . . . , σ
2
m). An

alternative set of weights can then be defined as

w† =
V −1ı

ı′V −1ı
, (11)

and these weights lie between zero and one, but they are — in general — not
optimal. The forecast combination y†c = w†′y is still unbiased, but its variance is
now

var(y†c) =
ı′V −1ΣyyV

−1ı

(ı′V −1ı)2
. (12)

Letting x = V −1/2ı and P = V −1/2ΣyyV
−1/2, we obtain

var(y†c)

var(y∗c )
=

x′Px

x′x
·
x′P−1x

x′x

and hence, by Kantorovich’s inequality (Abadir and Magnus, 2005, Exercise 12.17),

1 ≤
var(y†c)

var(y∗c )
≤

(λ1 + λm)
2

4λ1λm
, (13)

where λ1 and λm denote the largest and smallest eigenvalue of P , respectively.
This provides an estimate of the possible loss of precision caused by choosing w†

instead of w∗. In the most common case where we choose V = diag(σ2
1, . . . , σ

2
m),

we note that P is the correlation matrix associated with Σyy. Although important,
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the issue of optimal weights outside the (0, 1) interval is not considered further in
the current paper.

When weights are fixed, the optimal forecast combination y∗c is an improvement
over individual forecasts, because it remains unbiased and has smaller variance.
In applications, however, the weights will typically be random and we now turn to
this more realistic case.

3 Moments of the forecast combination: random

weights

As in the previous section, let y = (y1, . . . , ym)
′ be a vector of unbiased forecasts

with E yj = µ, and let w = (w1, . . . , wm)
′ be a vector of weights constrained

by
∑

j wj = 1, but now random rather than fixed. Let ∆yj = yj − E yj and
∆y = (∆y1, . . . ,∆ym)

′. Assuming that y and w are jointly distributed with finite
fourth-order moments, and writing

var

(
y
w

)

=

(
Σyy Σyw

Σwy Σww

)

,

we have
yc = w′y = µ+ w′∆y,

and hence
E yc = µ+ E(w′∆y) = µ+ trΣwy,

so that yc is in general a biased forecast. Also,

var(yc) = var(w′∆y), MSE(yc) = var(w′∆y) + (trΣwy)
2.

This is not yet very informative. To gain more insight we let ∆wj = wj − Ewj

and ∆w = (∆w1, . . . ,∆wm)
′. Then, w = Ew +∆w and hence

w′∆y = (Ew)′(∆y) + (∆w)′(∆y),

so that

var(w′∆y) = (Ew)′Σyy(Ew) + 2(Ew)′E[(∆y)(∆y)′(∆w)] + var[(∆w)′(∆y)].

This leads to the following proposition.

Proposition 3.1. The mean, variance, and mean squared error of the forecast

combination yc = w′y are given by

E yc = µ+ trΣwy,
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var(yc) = (Ew)′Σyy(Ew) + 2(Ew)′d+ δ − (trΣwy)
2,

and

MSE(yc) = (Ew)′Σyy(Ew) + 2(Ew)′d+ δ,

where the vector d and the scalar δ denote third- and fourth-order moments respec-

tively, and are defined as

d = E [(∆y)(∆y)′(∆w)] , δ = E [(∆w)′(∆y)]
2
.

We note the generality of this proposition. The only two things assumed (apart
from the existence of moments) are that each individual forecast is unbiased and
that the weights add up to one, and it is precisely the combination of these two
assumptions that leads to the simplicity of the formulas. It is not assumed that the
weights lie between zero and one. There is no problem in deriving the counterpart
of Proposition 3.1 for biased forecasts, but the formulae become cumbersome and
they are not needed for the story we wish to tell.

The distribution of the weights w is given by their location (Ew) and by their
shape (moments of ∆w). We can choose the location optimally by minimizing
MSE(yc) with respect to Ew under the restriction that the weights add up to one,
and this leads to Ew = w∗∗, where

w∗∗ =

(
1 + ı′Σ−1

yy d

ı′Σ−1
yy ı

)

Σ−1

yy ı− Σ−1

yy d.

It is important to note that the ‘optimal’ weights w∗ given in Equation (8) are no
longer optimal in the random-weights case, unless d = 0 which occurs for example
when Σww = 0 (so that ∆w = 0, the fixed-weights case) or if the joint distribution
is not skewed (for example symmetric) so that third-order moments vanish. With
Ew chosen optimally as w∗∗, the variance of yc is given by

var(yc) =
1 + 2ı′Σ−1

yy d− [(ı′Σ−1
yy ı)(d

′Σ−1
yy d)− (ı′Σ−1

yy d)
2]

ı′Σ−1
yy ı

+ δ − (tr Σwy)
2.

When weights are random rather than fixed the analysis and the conclusions
are less straightforward. First, the forecast combination yc will generally have a
larger variance when weights are random, because of the additional randomness
in the weights, but this is not always so. Second, it is no longer the case that the
variance of yc is necessarily smaller than the variance of each individual forecast,
even when we choose the weights ‘optimally’, say Ew = w∗ or Ew = w∗∗. Some
special cases will be instructive and highlight these differences.
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4 Special cases

We consider three special cases.

No skewness. If the joint distribution of (y, w) is not skewed, then the mean
and variance of the forecast combination yc = w′y are given by

E yc = µ+ trΣwy

and
var(yc) = (Ew)′Σyy(Ew) + δ − (trΣwy)

2.

No skewness occurs, for example, when the joint distribution is symmetric, what-
ever definition of multivariate symmetry one employs. If the joint distribution is
not skewed then the third-order moments d = E [(∆y)(∆y)′(∆w)] all vanish, so
that w∗ = w∗∗ and hence

MSE(yc) = (Ew)′Σyy(Ew) + δ

contains only two terms. In this case, the combined forecast does not necessarily
have smaller variance than each individual forecast. The first term is smaller than
the individual variance σ2

j , see Equation (10), but δ = E [(∆w)′(∆y)]2 is positive
and, if it is large enough, then MSE(yc) > σ2

j .

Normality. The variance of the weights Σww plays a key role in the variance
of the combination. This is why it may be good to select an estimator with small
variation in weights even when this is not the optimal estimator. For example, the
estimator based on w† may be ‘better’ than the estimator based on w∗.

The effect of Σww is well brought out in the case of joint normality. The mean
and variance of the forecast combination yc = w′y are then given by

E yc = µ+ trΣwy

and
var(yc) = (Ew)′Σyy(Ew) + tr(ΣwwΣyy) + tr(ΣwyΣyw).

This follows from the fact that multivariate normality implies no skewness, so that
d = 0, and also, using Anderson (1958, p. 39),

δij ≡ E[(∆wi)(∆yi)(∆wj)(∆yj)] = cov(wi, yi) cov(wj, yj)

+ cov(wi, wj) cov(yi, yj) + cov(wi, yj) cov(yi, wj),

so that
δ =

∑

ij

δij = (trΣwy)
2 + tr(ΣwwΣyy) + tr(ΣwyΣyw).
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The result then follows from Proposition 3.1.

Independence. One naturally expects the estimated weights w and the forecasts y
to be correlated, because they are typically estimated from the same data set. In
some cases, however, it may be possible to estimate the weights independently from
the forecasts. When this happens, that is, when y and w are independent with
finite second-order moments, then the forecast combination yc = w′y is unbiased,

E yc = µ,

and its variance and mean squared error are given by

var(yc) = MSE(yc) = (Ew)′Σyy(Ew) + tr(ΣwwΣyy).

5 Discussion

In their ‘simple explanation of the forecast puzzle’ Smith and Wallis (2009) offer
three main conclusions in terms of the mean squared error of the forecast (MSFE).
We now analyze these conclusions in the context of the theory developed in Sec-
tion 3. Their first conclusion is that

‘[. . . ] a simple average of competing forecasts is expected to be more
accurate, in terms of MSFE, than a combination based on estimated
weights.’

This is the situation illustrated for two dimensions in Figures 1 and 2. The com-
bination with equal weights is unbiased and its variance has only one component:
ı′Σyyı/m

2. In many situations this leads to a smaller mean squared error than a bi-
ased combination with additional components d and δ, as given in Proposition 3.1
for the case when the weights are estimated.

The second conclusion is that

‘[. . . ] if estimated weights are to be used, then it is better to neglect any
covariances between forecast errors and base the estimates on inverse
MSFEs alone, than to use the optimal formula originally given by Bates
and Granger for two forecasts, or its regression generalization for many
forecasts.’

Apart from the fact that including covariances may lead to negative weights, we
have seen that estimating the covariances increases the variance of the weights, as
also illustrated by Figures 2 and 4 in Smith and Wallis (2009). For fixed weights
the relationship between the two variances (with and without covariances) is given
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by (13), but the additional terms from Proposition 3.1 are likely to be larger for
the optimal weights based on estimated covariances. The special cases in Section 4
emphasize this point by showing explicitly how the variance of the weights, Σww,
appears in the formulae.

σ2
2

σ2
1

w∗0 11/2 w†

E

R†

R

Figure 3: Variance of forecast combination, two dimensions: random weights under
normality with and without covariances

Figure 3 provides a stylized illustration in two dimensions. The figure is iden-
tical to Figure 1, except that the middle curve has been added and the minimum
point F on the lowest curve has been removed. It gives the variance of the forecast
combination as a function of Ew. The bottom curve plots the variance when the
weights are nonrandom; the point E on the curve (not the minimum) gives the
variance when w = 1/2: equal weights. The top curve plots the variance according
to Proposition 3.1 and the minimum of the curve is in R, representing the point
where the optimal choice for Ew is estimated. The middle curve represents the
restricted case without covariances, where Ew is an estimate of σ2

2/(σ
2
1 + σ2

2), as
in (11). The minimum on the middle curve does not occur at R†, but because
the three variance curves move parallel to each other and fewer parameters are
required to estimate the variance in the middle curve than in the top curve, R† is
typically smaller than R.

The third conclusion of Smith and Wallis (2009) is:

‘When the number of competing forecasts is large, so that under equal
weighting each has a very small weight, the simple average can gain
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in efficiency by trading off a small bias against a larger estimation
variance. Nevertheless, in an example from Stock and Watson (2003),
[. . . ] the forecast combination puzzle rests on a gain in MSFE that has
no practical significance.’

This statement is based on simulations and empirical findings, but now it can be
assessed in any situation by comparing the variance of the combination with equal
weights, ı′Σyyı/m

2, with the variance of the combination with estimated weight
w†, given by the general formula in Proposition 3.1.

6 Numerical illustration

Our Figures 1–3 are stylized in order to provide a simple explanation of the puzzle.
In actual applications the shift and distortion of the dashed curve in Figure 1 will
vary in accordance with our theoretical results in (6) (for two dimensions) and
Proposition 3.1 (for m dimensions). To support our theoretical results and better
understand these shifts and distortions we now present a simple simulation study.

We closely follow the experimental design of Smith and Wallis (2009, Sec-
tion 3.1), in particular their case 2. We draw a sequence of T + 1 observations
from a strictly stationary AR(2) process

zt = φ1zt−1 + φ2zt−2 + ǫt (t = 1, . . . , T + 1),

where the {ǫt} are independent and identically distributed standard-normal vari-
ates, and φ1 and φ2 are given parameters subject to the stationarity conditions
φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. The variance of the process is given by

σ2

z = var(zt) =
1− φ2

(1 + φ2)[(1− φ2)2 − φ2
1]

and the first two autocorrelation coefficients are

ρ1 = corr(zt, zt−1) =
φ1

1− φ2

, ρ2 = corr(zt, zt−2) = φ1ρ1 + φ2.

Our aim is to forecast the final observation zT+1. Two forecasts are available,

y1 = ρ1zT , y2 = ρ2zT−1,

and we are interested in the properties of various forecast combinations yc =
wy1+(1−w)y2 for different values of φ1 and φ2. We let T = 30 and use the thirty
observations (z1, . . . , zT ) to estimate the weight w.
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Since the forecast zT+1 is random rather than fixed, we define e1t = zt − ρ1zt−1

and e2t = zt − ρ1zt−2, and consider the forecast errors

e1 = e1,T+1 = zT+1 − y1, e2 = e2,T+1 = zT+1 − y2.

Their variances are

σ2

1 = var(e1) = σ2

z(1− ρ21), σ2

2 = var(e1) = σ2

z(1− ρ22),

and their correlation is given by ρ = cov(e1, e1)/(σ1σ2), where

cov(e1, e2) = σ2

z(1− ρ2)(1− ρ21 + ρ2).

Letting ē1 = (1/(T − 2))
∑T−1

t=2
e1,t+1 and ē2 = (1/(T − 2))

∑T−1

t=2
e2,t+1 we obtain

unbiased estimates of the second-order moments as

(
σ̂2
1 ρ̂σ̂1σ̂2

ρ̂σ̂1σ̂2 σ̂2
2

)

=
1

T − 3

T−1∑

t=2

(
(e1,t+1 − ē1)

2 (e1,t+1 − ē1)(e2,t+1 − ē2)
(e1,t+1 − ē1)(e2,t+1 − ē2) (e2,t+1 − ē2)

2

)

.

Three weights are considered: the arithmetic mean w = 1/2, the estimated
optimal weight

w∗ =
σ̂2
2 − ρ̂σ̂1σ̂2

σ̂2
1 + σ̂2

2 − 2ρ̂σ̂1σ̂2

according to (8), and the estimated simplified weight (with ρ = 0)

w† =
σ̂2
2

σ̂2
1 + σ̂2

2

according to (11). When the weight is fixed at w = 1/2, we do not estimate it and
simply compute its exact variance as

var[(e1 + e2)/2] =
σ2
z

4

(
4− 3ρ21 − 3ρ22 + 2ρ21ρ2

)
.

But when the weights are either w∗ or w† we estimate them, because our purpose
is to better understand the uncertainty caused by the estimation of weights. For
the same reason, we do not estimate the parameters φ1 and φ2; these are set to
their true values. Any uncertainty shown in the simulations is therefore caused by
weight estimation.

This experiment is repeated 1,000,000 times, which suffices to control the sim-
ulation error. For given φ1 and φ2, each run produces a value of w and of the
two forecast errors e1 = zT+1 − y1 and e2 = zT+1 − y2. Since the forecast zT+1 is
random rather than fixed, Equation (6) needs to be written in terms of e1 and e2
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as discussed at the end of Section 1. The variance of the error ec = we1+(1−w)e2
of the combined forecast is

var(ec) = (Ew)2σ2

1
︸ ︷︷ ︸

term 1

+ (1− Ew)2σ2

2
︸ ︷︷ ︸

term 2

+2(Ew)(1− Ew)ρσ1σ2
︸ ︷︷ ︸

term 3

+ E [(w − Ew)(e1 − e2) ((Ew)e1 + (1− Ew)e2)]
︸ ︷︷ ︸

term 4

+ E[(w − Ew)2(e1 − e2)
2]

︸ ︷︷ ︸

term 5

− (cov(w, e1 − e2))
2

︸ ︷︷ ︸

term 6

, (14)

which has six terms each of which can be calculated from the simulations. For
both w = w∗ and w = w† we compute var(ec) and its six components for various
values of φ1 and φ2.

The results are presented in Tables 1 and 2. In Table 1 we let φ1 = φ2 for values
ranging between −0.9 and 0.4. In Table 2 we fix φ1 = 0.5 and let φ2 range between
−0.9 to 0.4. The first three terms of (14) are present whether or not randomness
of w is taken into account. Terms 4 and 5 account for randomness of w caused by
the estimation. Term 6 represents the squared bias which is negligible in all cases,
so we omit this term in the tables.

Our results are in general agreement with those of Smith and Wallis (2009). In
Table 1, where φ1 = φ2, the variance of ec is larger for the estimated weight w† than
for the fixed weight w = 1/2, but not much. However, the variance of ec is much
larger (3–4%) for the estimated weight w∗ than for the fixed weight. In Table 2,
where φ1 6= φ2, the variance of ec is generally smaller, sometimes substantially
smaller (up to about 15%), for the estimated weights w† and w∗ than for the fixed
weight. This is because when the optimal weight deviates much from one-half,
the gain from estimating the optimal weight is larger than the loss caused by
estimation error; see Elliott (2011) for a detailed discussion of this issue. When
w = w† terms 4 and 5 are close to zero, but when w = w∗ term 5 (the fourth-order
moments) can be substantial.

Figures are particularly informative as they show the relative position of the
forecasts and the corresponding curves. We consider two special cases, one repre-
senting each table. Figure 4a shows the case where φ1 = φ2 = 0.4, while Figure 4b
shows the case where φ1 = 0.5 and φ2 = −0.8. In Figure 4a we have φ1 = φ2 and
hence ρ1 = ρ2 and var(y1) = var(y2). This implies that σ2

1 and σ2
2 are close, so the

expected values of the estimated w† and w∗ are both close to 1/2. Since the esti-
mation of w† hardly affects the properties of the forecast combination, the points
E and R† (and the corresponding curves) are almost identical. The estimation of
w∗, on the other hand, increases the variance of the combination, so point R is
much higher and its corresponding curve is shifted up by terms 4 and 5 reported
in Table 1.
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Figure 4: Relative position of the forecasts and the corresponding curves. Point
E represents the combination with equal weights, point R† the combination with
estimated w†, and point R the combination with estimated w∗. The original
forecasts are labeled by their variances σ2

1 and σ2
2 .

In Figure 4b the original forecasts y1 and y2 have different variances and hence
σ2
1 and σ2

2 are not close. Again, the estimation of w† hardly affects the correspond-
ing curve, but point R† slides along the curve yielding a smaller variance than
the equal-weight combination E. The estimation of w∗ distorts the corresponding
curve, but the minimum point R offsets this distortion and produces a variance
similar to point R†, as reported in Table 2.

7 Concluding remarks

In analyzing the properties of a combined forecast we have followed an integrated
approach where the estimation of the weight is explicitly accounted for from the
start. Weight estimation always affects the variance of the combination. In some
situations the effect may be small, but in the case where the optimal weight is
estimated the influence is substantial. This is our explanation of the forecast
combination puzzle.

In this paper we have concentrated on the bias, variance, and mean squared
error of the combined forecast. These are the moments that scientists are typically
interested in. Other (functions of) moments can be similarly analyzed, for example
the absolute percentage error, mean absolute deviation, or directional accuracy.
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Table 1: Detailed numerical analysis of Equation (14) for fixed weight w = 1/2 and for estimated w† and w∗ when
φ1 = φ2 ∈ [−0.9, 0.4]. Simulation error is the difference between var(ec) and the sum of terms 1 to 5.

w = 1/2 w is estimated by w†

φ1 = φ2 var(ec) var(ec) E(w) E(ec) Term 1 Term 2 Term 3 Term 4 Term 5 Simul Err
−0.9 4.1413 4.1914 0.5069 0.00009 1.3525 1.2796 1.5094 0.0199 0.0065 0.0236
−0.8 2.2840 2.3012 0.5051 0.00006 0.7088 0.6802 0.8950 0.0070 0.0042 0.0060
−0.7 1.6782 1.6856 0.5034 −0.00003 0.4968 0.4836 0.6978 0.0031 0.0027 0.0016
−0.6 1.3867 1.3905 0.5019 −0.00003 0.3936 0.3876 0.6055 0.0014 0.0016 0.0007
−0.5 1.2222 1.2235 0.5011 −0.00001 0.3348 0.3319 0.5556 0.0006 0.0009 −0.0002
−0.4 1.1224 1.1222 0.5005 0.00001 0.2982 0.2970 0.5272 0.0002 0.0004 −0.0008
−0.3 1.0609 1.0594 0.5002 0.00000 0.2749 0.2745 0.5114 0.0001 0.0002 −0.0017
−0.2 1.0243 1.0278 0.5001 −0.00001 0.2605 0.2604 0.5035 0.0000 0.0000 0.0034
−0.1 1.0055 1.0058 0.5001 0.00000 0.2526 0.2525 0.5005 0.0000 0.0000 0.0003
0.1 1.0045 1.0043 0.4999 0.00000 0.2524 0.2526 0.4994 0.0000 0.0000 −0.0002
0.2 1.0156 1.0179 0.4997 −0.00001 0.2601 0.2607 0.4948 0.0000 0.0001 0.0022
0.3 1.0283 1.0278 0.4997 −0.00005 0.2744 0.2751 0.4788 0.0000 0.0006 −0.0012
0.4 1.0317 1.0335 0.4996 0.00007 0.2971 0.2981 0.4365 0.0000 0.0028 −0.0010

w = 1/2 w is estimated by w∗

φ1 = φ2 var(ec) var(ec) E(w) E(ec) Term 1 Term 2 Term 3 Term 4 Term 5 Simul Err
−0.9 4.1413 4.2911 0.5176 0.00017 1.4100 1.2248 1.5078 0.0502 0.0444 0.0540
−0.8 2.2840 2.3681 0.5152 0.00015 0.7374 0.6527 0.8942 0.0217 0.0414 0.0207
−0.7 1.6782 1.7405 0.5106 −0.00010 0.5111 0.4697 0.6975 0.0120 0.0397 0.0103
−0.6 1.3867 1.4387 0.5040 −0.00009 0.3969 0.3844 0.6054 0.0069 0.0389 0.0061
−0.5 1.2222 1.2676 0.4963 −0.00007 0.3285 0.3382 0.5555 0.0040 0.0382 0.0031
−0.4 1.1224 1.1632 0.4853 0.00002 0.2804 0.3153 0.5268 0.0019 0.0380 0.0008
−0.3 1.0609 1.0993 0.4688 0.00002 0.2415 0.3101 0.5094 0.0011 0.0378 −0.0006
−0.2 1.0243 1.0651 0.4384 −0.00023 0.2002 0.3285 0.4958 −0.0003 0.0378 0.0029
−0.1 1.0055 1.0431 0.3571 −0.00006 0.1288 0.4175 0.4596 −0.0002 0.0374 0.0000
0.1 1.0045 1.0415 0.6676 0.00010 0.4503 0.1116 0.4433 −0.0006 0.0378 −0.0007
0.2 1.0156 1.0549 0.5845 −0.00016 0.3559 0.1798 0.4807 −0.0008 0.0380 0.0011
0.3 1.0283 1.0649 0.5546 −0.00039 0.3381 0.2180 0.4731 −0.0007 0.0384 −0.0023
0.4 1.0317 1.0674 0.5358 0.00026 0.3418 0.2565 0.4343 −0.0011 0.0381 −0.0019
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Table 2: Detailed numerical analysis of Equation (14) for fixed weight w = 1/2 and for estimated w† and w∗ when
φ1 = 0.5 and φ2 ∈ [−0.9, 0.4]. Simulation error is the difference between var(ec) and the sum of terms 1 to 5.

w = 1/2 w is estimated by w†

φ2 var(ec) var(ec) E(w) E(ec) Term 1 Term 2 Term 3 Term 4 Term 5 Simul Err
−0.9 2.7064 2.3201 0.3235 −0.00017 0.5508 1.0599 0.7105 −0.0099 0.0169 −0.0082
−0.8 1.7724 1.6749 0.3857 0.00000 0.4132 0.6395 0.6201 −0.0026 0.0074 −0.0027
−0.7 1.4637 1.4408 0.4309 0.00005 0.3640 0.4827 0.5894 −0.0003 0.0035 0.0015
−0.6 1.3115 1.3095 0.4656 −0.00001 0.3387 0.3972 0.5705 0.0004 0.0017 0.0011
−0.5 1.2222 1.2243 0.4917 0.00001 0.3224 0.3444 0.5554 0.0005 0.0009 0.0007
−0.4 1.1645 1.1650 0.5117 −0.00002 0.3117 0.3094 0.5422 0.0004 0.0005 0.0007
−0.3 1.1251 1.1199 0.5264 0.00002 0.3045 0.2860 0.5302 0.0004 0.0003 −0.0014
−0.2 1.0972 1.0903 0.5366 0.00001 0.2999 0.2707 0.5189 0.0003 0.0002 0.0003
−0.1 1.0771 1.0676 0.5428 0.00000 0.2976 0.2618 0.5077 0.0003 0.0003 −0.0001
0.1 1.0516 1.0407 0.5444 0.00003 0.2994 0.2599 0.4821 0.0004 0.0006 −0.0018
0.2 1.0430 1.0378 0.5398 −0.00002 0.3035 0.2670 0.4645 0.0005 0.0011 0.0011
0.3 1.0345 1.0294 0.5311 0.00000 0.3099 0.2803 0.4394 0.0004 0.0022 −0.0030
0.4 1.0228 1.0276 0.5177 −0.00011 0.3190 0.3019 0.4003 0.0004 0.0045 0.0014

w = 1/2 w is estimated by w∗

φ2 var(ec) var(ec) E(w) E(ec) Term 1 Term 2 Term 3 Term 4 Term 5 Simul Err
−0.9 2.7064 2.2844 0.1868 −0.00025 0.1837 1.5314 0.4932 0.0110 0.0535 0.0114
−0.8 1.7724 1.6724 0.2252 −0.00007 0.1408 1.0173 0.4566 0.0055 0.0467 0.0055
−0.7 1.4637 1.4636 0.2733 0.00008 0.1465 0.7869 0.4774 0.0038 0.0434 0.0057
−0.6 1.3115 1.3494 0.3421 −0.00004 0.1829 0.6019 0.5161 0.0032 0.0415 0.0039
−0.5 1.2222 1.2692 0.4380 0.00002 0.2558 0.4211 0.5470 0.0033 0.0386 0.0035
−0.4 1.1645 1.2016 0.5706 −0.00016 0.3877 0.2392 0.5317 0.0039 0.0350 0.0040
−0.3 1.1251 1.1373 0.7314 0.00016 0.5879 0.0919 0.4178 0.0052 0.0311 0.0036
−0.2 1.0972 1.0841 0.8794 0.00014 0.8055 0.0183 0.2213 0.0047 0.0298 0.0046
−0.1 1.0771 1.0488 0.9520 0.00002 0.9154 0.0029 0.0935 0.0024 0.0321 0.0024
0.1 1.0516 1.0405 0.8437 0.00028 0.7191 0.0306 0.2563 −0.0010 0.0386 −0.0028
0.2 1.0430 1.0527 0.7420 −0.00012 0.5735 0.0839 0.3580 −0.0013 0.0390 −0.0005
0.3 1.0345 1.0542 0.6500 −0.00002 0.4642 0.1562 0.4015 −0.0014 0.0383 −0.0046
0.4 1.0228 1.0570 0.5764 −0.00032 0.3956 0.2328 0.3914 −0.0009 0.0379 −0.0002
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