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Abstract: In specifying a regression equation, we need to specify which regressors

to include, but also how these regressors are measured. This gives rise to two levels

of uncertainty: concepts (level 1) and measurements within each concept (level 2).

In this paper we propose a hierarchical weighted least squares (HWALS) method to

address these uncertainties. We examine the effects of different growth determinants

taking explicit account of the measurement problem in the growth regressions. We

find that estimates produced by HWALS provide intuitive and robust explanations.

We also consider approximation techniques which are useful when the number of

variables is large or when computing time is limited.

Keywords: Hierarchical model averaging, Growth determinants, Measurement prob-

lem.
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I. Introduction

In applied econometrics, when estimating a regression equation, one has to decide

which concepts (say inflation) to include in the regression: the ‘specification’ prob-

lem. In addition, one has to decide which measurements of these concepts to use

(for example, CPI-based or PPI-based inflation): the ‘measurement’ problem. The

measurement problem is common in practice because most economic variables can

be measured in various ways. Climate, for example, as a potential determinant of

growth, can be measured by the fraction of a country lying in the tropics, the area of

a country lying in the tropics, or absolute latitude. Another example is the concept

of market concentration, typically thought of as a factor that affects the financial

stability of individual firms, which can be measured by the Herfindahl-Hirschman

index but also by the market share of, say, the four largest firms.

The measurement problem raises at least three issues. First, different choices of

measurements produce different estimates for the same concept, leading to ambiguity

in explanation and policy implications. Second, multiple measurements typically

cause multicollinearity if they are included in one regression model, so that the

estimates for individual measurements lack precision, and statistical inference on

a concept based on these estimates can therefore be misleading. Third, including

multiple measurements in one model can also cause a problem of dimensionality

when the number of explanatory variables is close to or even exceeds the number of

observations.

The current paper addresses the measurement problem by introducing hierarchi-

cal (two-level) model averaging, where we perform model averaging over concepts

and measurements. From here on we shall denote concepts as groups, and measure-

ments as variables. We propose a method called hierarchical weighted least squares
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(HWALS), a generalization of weighted average least squares (WALS) developed in

Magnus et al. (2010). In hierarchical model averaging we introduce prior probabili-

ties for the variables in each group, and treat the regression parameters as hierarchical

random variables. We are uncertain about the error term, about which groups to se-

lect, and about which variables to select. All three levels of uncertainty are explicitly

taken into account in hierarchical WALS estimation.

The HWALS procedure has several advantages. It provides an estimate and

standard deviation for each group, which facilitates statistical inference and enables

us to analyze the effect of each group; it combines model selection and estimation

and thus avoids the problems associated with pretesting (see Danilov and Magnus

(2004) for a discussion and review of these problems); it allows researchers to assign

various types of priors depending on the strength of their information and beliefs;

it limits the extent of multicollinearity and dimensionality problems because it only

considers models with one variable in each group; and its computational burden is

very light, especially compared to standard Bayesian model averaging (BMA) and

Bayesian averaging of classical estimates (BACE).

In the empirical growth literature the three types of uncertainty are especially

important, because there is little consensus in this literature on which regressors

to include, and, even if there is agreement on a regressor (group), there is still

disagreement on which measurement (variable) of that regressor to use. In addition,

the number of variables in growth empirics is large and may even exceed the number

of observations. For example, Durlauf et al. (2005) listed 145 candidate variables,

while the number of countries is typically less in cross-country growth studies. Our

paper employs HWALS to re-investigate the effects of various growth determinants.

We mainly compare our estimates with those of Sala-i-Martin et al. (2004) and
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with the WALS estimates of Magnus et al. (2010). Our hierarchical model averaging

estimates produce more intuitive signs and they are more robust. This is the benefit

we gain from not ignoring the measurement problem, so that correlated variables

within one group are not all included in the regression. Our empirical results also

provide several new insights. For example, we find — in contrast to the current

literature — that education and relative government size (government’s economic

activities) are not robust, because some of the variables in these groups have poor

explanatory power in the growth regressions.

The paper is organized as follows. A literature review is provided in Section II.

In Section III we present the hierarchical estimation strategy. Section IV describes

the data, grouping, and scaling. We apply our estimation strategy to the data in

Section V and discuss the results. Next we address the potential problem that the

number of variables is too large to apply the HWALS technique directly. In that

case, approximations are required and these are discussed in Section VI. Section VII

concludes. In our supplementary document (Magnus and Wang, 2014) we present

extensions and more detailed analyses.

II. A brief review of the literature

The measurement problem is not new — it was mentioned, inter alia, in Brock et al.

(2003) in the context of growth empirics. A popular method to deal with it is ‘extreme

bounds analysis’ (Leamer and Leonard, 1983; Leamer, 1985), but this method has

the disadvantage (in contrast to HWALS) that it produces various estimates for each

concept. Another conventional method, called ‘pretesting’, is to try many different

concepts and select the most appealing combination. There are many problems with

this procedure (Danilov and Magnus, 2004) caused by the fact that model selection
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and estimation are completely separated, so that uncertainty in the model selection

is ignored when reporting properties of the estimates. In contrast to pretesting,

HWALS combines model selection and estimation in one procedure.

One may also employ a factor-augmented regression model. Here we must decide

on the number of factors (pretest problem), and when more than one factor is used

the explanation of a concept becomes more difficult. A possible solution to both

problems is to extract just one factor from each group, but then we would use only

a small portion of the information in the data.

Since Raftery et al. (1997), Bayesian model averaging has developed as a popular

tool in addressing model uncertainty, especially in the application to the empirical

growth literature; see, inter alia, Fernández et al. (2001), Sala-i-Martin et al. (2004),

and Ciccone and Jarociński (2010). Standard Bayesian model averaging addresses

model uncertainty (which concepts to include) in growth regressions, while our ap-

proach addresses both model uncertainty and measurement uncertainty simultane-

ously, in the same spirit as Salimans (2012) who studied functional-form uncertainty

and model uncertainty simultaneously.

A recent study by Durlauf et al. (2008b) investigated the robustness of growth

theories using Bayesian model averaging with a dilution prior. This is related to what

we do, although the growth theories and their empirical proxies studied in Durlauf

et al. (2008b) differ in an essential way from our ‘concepts’ and ‘measurements’.

Multiple empirical proxies capture different aspects of a growth theory, and each as-

pect itself is a concept. For example, Durlauf et al. (2008b) considered two proxies

for the geography theory, namely the fraction of tropical/subtropical land area and

the fraction of land near navigable water. These two proxies indeed measure two

effects of geography on growth: climate and physical accessibility (two concepts),
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and for each concept they only have one measurement. The two proxies of the geog-

raphy theory are not alternative measurements for the same concept (the correlation

is only around 0.14), and this is where their paper differs from ours. In our case,

standard BMA cannot be applied, primarily because we do not allow our model

space to contain models with multiple measurements within one group. The use of

a dilution prior (George, 2010) captures the dilution property resulting from multi-

collinear variables, but it does not address the fact that multiple measurements of a

concept are included in one model, leading to misleading Bayesian model averaging

estimates (due to misleading likelihoods and estimates obtained from models con-

taining multicollinear variables in the same group). By shrinking the model space,

our HWALS procedure addresses this problem and also reduces the computational

burden. HWALS thus also differs from the hierarchical dilution prior used in Durlauf

et al. (2012) who worked with the whole model space.

Our approach is also related to the jointness statistic proposed in Doppelhofer

and Weeks (2009), which measures the dependence between explanatory variables.

The jointness measure is the posterior probability that two or more variables appear

in the same model. Multiple measurements of a concept are correlated with each

other and are likely, but not certain, to have strong negative jointness. Conversely,

variables that have negative jointness do not necessarily measure the same concept.

Like other Bayesian approaches, the jointness measure computed from the posterior

probability is also affected by the multicollinearity of variables in the same group.

Our work is in the same spirit as the hierarchical structure studied by Brock et

al. (2003) and the heredity prior proposed by Chipman (1996). Brock et al. (2003)

employed a tree structure to construct prior probabilities, while Chipman (1996)

considered priors for group predictors and for competing predictors. Our hierarchical
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averaging method resembles these two approaches, especially since all three methods

average over a subset of models. But our method differs from the two approaches

in at least four aspects. First, unlike Brock et al. (2003) who assigned equal and

independent weights to each growth theory in a tree structure, HWALS allows for

inequality and dependence between the various theories. Second, compared with the

heredity prior, the method of restricting the model space is much simpler in HWALS

(groups and variables). Third, our procedure allows us to assign various types of

priors to measurements (imprecise priors, data-dependent priors) depending on the

strength of the researcher’s beliefs. Finally, HWALS provides an explicit form of the

first two unconditional moments.

III. Hierarchical weighted average least squares

Groups and variables

We write the linear regression model as

y = X∗β∗ + ǫ = X∗

1β
∗

1 +X∗

2β
∗

2 + ǫ, (1)

where we note two deviations from standard notation. First we write X∗ and β∗

rather thanX and β, because the regressors are considered to be ‘groups’, for example

education or inflation. These are groups (concepts) rather than precisely defined

variables. There are many measures of education and of inflation that the researcher

could use. These measurements of the same concept in one group are our ‘variables’.

Second, we distinguish between focus regressors (labeled 1) and auxiliary regressors

(labeled 2). Focus regressors are in the model irrespective of any preliminary test

or diagnostic. These include the variables of specific interest and the variables that
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economic knowledge dictates to be in the model. Auxiliary regressors, on the other

hand, may or may not be in the model, depending on prior knowledge and diagnostics.

We write the columns of the (group) regressors as

X∗

1 =
(

x∗

1,1, . . . , x
∗

1,k1

)

, X∗

2 =
(

x∗

2,1, . . . , x
∗

2,k2

)

, (2)

and the components of the (group) parameter vectors as

β∗

1 =



















β∗
1,1

β∗
1,2

...

β∗
1,k1



















, β∗

2 =



















β∗
2,1

β∗
2,2

...

β∗
2,k2



















. (3)

The distinction between groups and variables is important. The l1-th focus group

x∗
1,l1

contains m1,l1 variables, and the l2-th auxiliary group x∗
2,l2

contains m2,l2 vari-

ables. Groups may contain only one variable. While the variables themselves are

considered deterministic, a group is random (if there are at least two variables in the

group) because the choice between the variables or the weighting scheme depends on

the data (and on priors).

We attach prior probabilities to the variables based on our confidence. Thus,

Pr
(

x∗

1,l1 = xi
1,l1

)

= πi
1,l1 , Pr

(

x∗

2,l2 = xj

2,l2

)

= πj

2,l2
, (4)

where i = 1, . . . , m1,l1 and j = 1, . . . , m2,l2 , under the constraints

m1,l1
∑

i=1

πi
1,l1

= 1,

m2,l2
∑

j=1

πj

2,l2
= 1. (5)

Given specific variables xi
1,l1

and xj

2,l2
in each group, we construct the design matrices

X
(i)
1 =

(

xi1
1,1, . . . , x

ik1
1,k1

)

, X
(j)
2 =

(

xj1
2,1, . . . , x

jk2
2,k2

)

, (6)
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and the parameter vectors

β
(i)
1 =



















βi1
1,1

βi2
1,2

...

β
ik1
1,k1



















, β
(j)
2 =



















βj1
2,1

βj2
2,2

...

β
jk2
2,k2



















, (7)

where (i) = (i1, . . . , ik1) and (j) = (j1, . . . , jk2). The resulting model can then be

written as

y = X
(i)
1 β

(i)
1 +X

(j)
2 β

(j)
2 + ǫ, (8)

where we emphasize again that each model includes precisely one variable from each

group.

A three-step procedure

Under the assumption that the prior distributions on separate groups are indepen-

dent, the prior probability attached to a specific choice of variables (i) and (j) is

given by

π(i,j) =

k1
∏

l1=1

π
il1
1,l1

k2
∏

l2=1

π
jl2
2,l2

. (9)

The validity of the independence assumption embodied in (9) depends on how the

groups are set up, and it is therefore important to investigate the sensitivity of the

results to different groupings. We consider this issue in Section V. This is the first

step.

For given (i) and (j) we estimate (8) by Bayesian model averaging. In Bayesian

model averaging the estimates are computed as weighted averages of the estimates

obtained over all possible models, thus allowing for the fact that auxiliary regressors

may or may not be in the model, depending on priors and diagnostics. A major

10



advantage of Bayesian model averaging is that it treats model selection and estima-

tion as one procedure, thus incorporating not only the error uncertainty but also

the model uncertainty. We shall use a method called WALS (weighted average least

squares), but this is not essential in the development. WALS is a model averaging

approach, taking an intermediate position between Bayesian and frequentist meth-

ods. It averages the estimates obtained from constrained least squares (frequentist)

but introduces Bayesian components in the weighting scheme. The advantages of

WALS are both conceptual and computational. The choice of priors in WALS mim-

ics ignorance (the typical situation in model specification) and is also near-optimal

in the sense of minimizing some risk or regret criterion. The computation time of

WALS is negligible (of order k2) due to a semi-orthogonal transformation of the aux-

iliary variables, in contrast to the heavy computational burden of standard BMA

and frequentist model averaging (of order 2k2).

The version of WALS employed here is described in Magnus et al. (2010), and

the estimates are made scale-independent using the weighting scheme proposed in

De Luca and Magnus (2011). The prior chosen is Laplace, although robust versions

now exist (Kumar and Magnus, 2013). The WALS procedure was recently reviewed

in Magnus and De Luca (2014), where the reader can find elaborate discussions of

the advantages and disadvantages of this model averaging procedure.

We thus obtain the posterior mean (the WALS estimates),

b(i,j) =





β̂
(i,j)
1

β̂
(i,j)
2



 , (10)

and the posterior variance matrix V (i,j). This is the second step.

These posterior moments are, of course, still conditional on the choice of variables,

that is, on (i) and (j). In the third and final step we obtain the unconditional
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posterior moments b and V from

b =
∑

(i,j)

π(i,j)b(i,j) (11)

and

V =
∑

(i,j)

π(i,j)
(

V (i,j) + b(i,j)b(i,j)
′
)

− bb′. (12)

The variance V in the posterior distribution thus fully represents the three sources

of uncertainty associated with the hierarchical procedure: uncertainty represented

by the error term given the specification of the model; uncertainty about which

auxiliary groups to include; and uncertainty about which variables to include in each

group (the more different variables in a group, the larger V ). The estimator b is the

hierarchical WALS (HWALS) estimator, and V is taken to be its variance.

The HWALS estimator b cannot be interpreted as the usual marginal effect, since

it corresponds to a group (concept) rather than to a variable (measurement). Since

all variables are normalized to the same scale (see Section IV), the estimated coef-

ficient of the i-th variable in a group is the normalized marginal effect, taking into

account possible inclusion of other auxiliary variables. Due to the normalization,

such effects are comparable not only within concepts but also between concepts.

The averaged estimator (over the variables) of a group coefficient can thus be in-

terpreted as the average effect of the group. Like other model averaging estimators

the HWALS estimator belongs to the class of biased estimators, and hence t-ratios

do not have their usual interpretations. One limitation of HWALS is that standard

statistical tests of coefficients are not possible in HWALS since the distribution of

WALS estimates is not known.
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Choice of π

The prior probabilities π should be specified, and the question is how. The specifi-

cation of π should depend on the strength of the researcher’s prior information and

beliefs on the ‘quality’ of the variables. We distinguish between four cases.

In the first case, the researcher has no prior information at all. In each group the

quality of one variable is ‘independent’ of the quality of another, and equally good,

so we assign equal weights within each group, that is,

πi
1,l1

=
1

m1,l1

, πi
2,l2

=
1

m2,l2

.

This is our default. Discrete uniform priors (over models) in a Bayesian model

averaging framework were recently criticized by George (2010), especially in the

presence of highly correlated regressors. He suggested the use of dilution priors in

order to prevent the probability of a set of ‘similar’ models increasing when more

similar variables are introduced. While this is a good idea, our case is different,

because our prior probabilities are assigned to variables rather than the models, and

thus the probabilities are not diluted by highly correlated variables.

In the second case, the researcher has no prior information but hopes to update

the prior using the observed data. We propose to use data-dependent priors. We

write X∗
1 = (X11 : X

∗
12), where X11 contains the focus regressors for which only one

variable is available, and X∗
12 contains the focus regressors for which at least two

variables are available. For each group l in X∗
12 we estimate

y = X11β11 + βi
1,lx

i
1,l + ǫ (i = 1, . . . , m1,l), (13)

from which we calculate the likelihood L(xi
1,l) = Pr

(

y,X|x∗
1,l = xi

1,l

)

. Then we up-

date the prior πi
1,l by Bayes’ rule:

π̄i
1,l = Pr

(

x∗

1,l = xi
1,l|y,X

)

=
πi
1,lL(x

i
1,l)

∑m1,l

h=1 π
h
1,lL(x

h
1,l)

.
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A larger weight is thus assigned to the variable with more explanatory power (larger

likelihood). Equation (13) is misspecified, because we ignoreX∗
12 (except one variable

xi
1,l) and all auxiliary regressors in X∗

2 . However, the effect of the misspecification

on π̄ is partially ‘divided out’ and thus expected to be small. We confirmed this

expectation by randomly including some additional controls in the regressions; see

Magnus and Wang (2014) for details.

Two subcases are of interest. In case 2(a) (one-step updating) we update the

priors for the auxiliary variables in the same way, based on the equation

y = X11β11 + βj

2,lx
j

2,l + ǫ (j = 1, . . . , m2,l). (14)

In case 2(b) (two-step updating) we update the priors for the auxiliary variables

based on the extended equation

y = X
(i)
1 β

(i)
1 + βj

2,lx
j

2,l + ǫ (j = 1, . . . , m2,l), (15)

where all focus groups are used, not only the groups with one variable (X11), but

also the groups with two or more variables. For the latter we select the variable with

the highest posterior probability π̄i
1,l.

The third case occurs when we have unequal prior information about the vari-

ables, and the exact values of prior probabilities are also known.

In the fourth case we can rank the prior probabilities within one group with-

out knowing their precise values. Here we use ‘imprecise probability’ as our prior,

namely [π−, π+]. This generalization of precise (point-valued) probability satisfies all

principles of probability theory (Walley and Fine, 1982; Weichselberger, 2000), and

allows us to model the uncertainty of subjective prior probabilities. The resulting

estimates b and V are then also interval-valued.
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IV. Data, grouping, and scaling

We reexamine growth determinants using the proposed hierarchical method of Sec-

tion III. There is a large literature on explaining cross-country growth differences,

but this literature has not led to a consensus on which determinants to include and

which measure of each determinant to use. These issues are well exposed in Brock

et al. (2003). Growth empirics thus provides a typical and important example of a

situation where two types of uncertainty exist: uncertainty about the relevance of a

group and uncertainty about which measure of each determinant to use.

Our data are taken primarily from Sala-i-Martin et al. (2004). The dependent

variable is the average growth rate of GDP per capita 1960–1996. The Sala-i-Martin

et al. (2004) data set contains 88 countries and 67 variables (plus the constant term).

To this list we have added seven variables from Sala-i-Martin (1997): six variables

in education and one variable in relative government size. These are indicated with

an asterisk (∗) in Table 1. This makes a total of 74 variables (25 groups) plus the

constant term. We use 72 (rather than 88) countries, the maximum possible num-

ber if we wish to obtain a ‘balanced’ data set with an equal number of observations

for all regressors. Since we have more variables than observations we cannot esti-

mate the whole set. Grouping will therefore be especially helpful here. The issue

of having more variables than observations has recently received new attention in

the literature; see Huang et al. (2010) and Jensen and Würtz (2012) for alternative

approaches.

TABLES 1 and 2

The regressors are listed and grouped in Tables 1 and 2. The 74 variables are
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organized in 25 groups. The grouping is based on Durlauf et al. (2005) with two

deviations: we split the ‘geography’ group in two (‘tropics effect’ and ‘geography

excluding tropics effect’), and we also split the ‘government’ group in two (‘relative

government size’ and ‘defense’). The reason is that within the new groups ‘trop-

ics effect’ and ‘relative government size’ the same concept is measured, while the

remaining items are of a different nature.

We distinguish between two types of groups. A group of type I (Table 1) contains

variables providing alternative measurements of one concept. For example, the extent

of democracy in a country (the concept) can be measured in several ways, and we

allow two measurements (political rights and civil liberties). An important growth

determinant is education (the concept), which attempts to capture human capital

accumulation. Since the output of human capital investment is difficult to measure,

one typically resorts to input variables, such as the enrollment rate, school years,

or the share of public education spending. These input variables serve as different

(but typically highly correlated) measurements for the same concept. We want to

use only one measurement, but we do not know which one. Our theory of Section III

applies to this type, that is, to groups (1)–(12) in Table 1.

In contrast, a group of type II (Table 2) contains variables measuring different as-

pects of one concept. For example, the group ‘regional effect’ contains seven dummy

variables, each indicating whether a country belongs to some particular (colonial)

region. These variables all measure a regional effect, but a different aspect of it, and

these aspects are not highly correlated or easily aggregated. Our hierarchical theory

does not apply to groups (13)–(20), because parameter estimates associated with

these variables have different meanings, and hence a weighted sum of these estimates

makes little sense. In our hierarchical estimation procedure we can either include
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all variables of a type II group or select a representative. For groups (13)–(15) we

select one representative; for groups (16)–(20) we include all variables. Groups (21)–

(25) only contain one variable, and hence there is no difference between variable and

group. In summary, we have 12 type I groups (35 variables) and 13 type II groups

(39 variables).

Grouping of variables can be ambiguous. While the grouping in Tables 1 and 2

based on Durlauf et al. (2005) is plausible, there is no complete agreement in the

growth literature on how to group the large number of growth proxies. For example,

one may argue that the enrollment rates and attainment levels in the education

group may have different effects on growth, because the former relate to the flow of

education (Mankiw et al., 1992) whereas the latter refer to stocks. We address such

problems in Section V.

Before we apply the hierarchical WALS procedure, we scale all variables, that

is, we scale (and center) each variable x by replacing it with (x−mean(x)) /std(x),

so that the resulting transformed variable has zero mean and unit variance. In

standard (non-hierarchical) WALS the centering has no effect (other than on the

constant term), but the scaling does. The latter effect can be removed by scaling the

matrix

Z(i,j) = X
(j)
2

′

(

I −X
(i)
1

(

X
(i)
1

′

X
(i)
1

)−1

X
(i)
1

′

)

X
(j)
2 ,

such that all its diagonal elements equal one (De Luca and Magnus, 2011). In hierar-

chical WALS the preliminary scaling is important because it makes the magnitudes

of the estimated parameters within one group comparable.

In addition to scaling the variables, we may also wish to change the sign of some

variables, so that variables within one group are positively correlated. For example,

in the ‘health’ group we change the definition of malaria prevalence to malaria non-
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prevalence, so that both variables in this group now measure the same thing rather

than opposite things. The five variables that have been re-signed are the fraction of

the population over 65, the socialism dummy, malaria prevalence, civil liberties, and

absolute latitude. The within-group correlations are presented in Magnus and Wang

(2014, Table 1).

V. Growth empirics

There is not much consensus in the empirical growth literature on which growth

determinants are salient and robust among a large set of growth theories. Most

papers report insignificant coefficients for most determinants. One reason is that

growth theories are open-ended (Brock and Durlauf, 2001), another that the same

concept can be measured by (sometimes many) different empirical proxies. In this

paper we concentrate on the second aspect. Different choices of measurement may

result in very different estimates. If we include all or many measurements of the same

concept in one regression, then the t-ratios will be misleading due to multicollinearity.

Our theory allows us to treat the 74 (plus the constant) different measurements

(variables) as elements of only 25 (plus the constant) concepts (groups).

A few words are in order to explain why some groups are chosen to be focus

and some to be auxiliary. We discuss two variants. In variant HWALS-F1 only

the constant term is a focus group, while all other groups are auxiliary. This is

the typical model averaging framework. More information is used in the second

variant, HWALS-F8, where eight groups (including the constant term) are treated

as focus groups. These eight groups are thus included in every model. The eight

focus groups consist of four type I groups (education, health, initial state, tropics

effect), two type II groups with a representative variable (ethnicity and language,
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religion), and two type II groups with only one variable (price distortion, constant

term). The distinction between focus and auxiliary is made at the group level: if a

group is considered to be focus (auxiliary), then each variable in that group is also

focus (auxiliary). Since the estimates in these two variants are highly similar, we

only report results for HWALS-F8.

The choice of focus variables is motivated by the robust determinants of the en-

dogenous growth model, and are in line with the choices in Magnus et al. (2010).

More particularly, education and health capture different facets of human capital,

with the former as a direct measure and the latter as a proxy for non-educational

human capital. The initial state controls the convergence of growth (see also Sec-

tion V). These variables are thought to be the most established drivers in both the

neoclassical and the endogenous growth models. Instead of using the equipment in-

vestment as a measure of physical capital accumulation, we follow Sala-i-Martin et

al. (2004) and Magnus et al. (2010) and use the investment price (labeled as price

distortion) as a variable for domestic investment. Our focus variables include three

slowly-moving ‘fundamental’ growth determinants (see Durlauf et al. (2008a) and

the references therein). Ethnicity and language together with religion represent the

degree of fractionalization and the culture in a society. The tropics effect is one of

the most important features of a country’s geography because countries in the trop-

ical zone possess production technology which is less modern than the technology

used in more temperate zones (Sachs, 2000). These three determinants are shown

to be the most salient and robust among other fundamental variables in a number

of growth studies (Sala-i-Martin, 1997; Fernández et al., 2001; Sala-i-Martin et al.,

2004; Magnus et al., 2010). The eight focus variables are the same as in Magnus et

al. (2010), allowing comparisons to be made.
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TABLES 3 and 4

In Tables 3 and 4 we present the results for HWALS-F8 using uniform priors and

data-dependent priors, and compare them with WALS-F8. The sensitivity of the

results to using other priors is studied in Magnus and Wang (2014), where we also

present the results for HWALS-F1. We find that the effects of proximate determi-

nants on economic growth are robust to the choice of prior probability, except for

the education group. The indirect effect (effect on other groups) of a different choice

of prior probability is small, but the direct effect (effect on the group itself) varies

across groups. In general, the choice of priors is not a serious issue for the estimation

of the standard deviations in our growth empirics.

The WALS-F8 estimates are based on the 67 variables in Sala-i-Martin et al.

(2004), hence without the seven additional variables from Sala-i-Martin (1997). They

differ from those in Magnus et al. (2010, Table 7), because of the scaling and the

different number of observations. The WALS-F8 estimates correspond to variables;

the HWALS-F8 estimates to groups.

We shall also compare our results with the BACE estimates of Sala-i-Martin et

al. (2004). Since the posterior moments given by BACE are conditional on inclusion,

their precision is misleading as pointed out in Magnus et al. (2010). Therefore, we

compare with the unconditional BACE moments according to Equations (8) and (14)

in Sala-i-Martin et al. (2004). The full set of unconditional BACE estimates is

available in Magnus and Wang (2014).
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Sign comparisons

Let us first compare the signs of HWALS-F8 using uniform priors with those of

WALS-F8 and BACE, where we recall that the last two methods are based on vari-

ables while HWALS is based on groups. We shall say that an HWALS estimate is

‘totally different’ from the BACE/WALS estimate if the sign of a type I group is

opposite to all of its variables, and ‘partially different’ if the sign of a type I group is

opposite to some of its variables. For type II groups this distinction is not necessary.

Comparing HWALS to WALS we see that in five of the type I groups the esti-

mates are partially different, and in three type I and nine type II groups they are

totally different. Hence, quite different estimation results are produced by HWALS

as compared to WALS. The signs produced by HWALS are generally more intuitive

than those produced by WALS, except for education. For example, HWALS suggests

that regions with higher fractions of tropical land have lower growth rates, while all

variables capturing the effect of the tropics have a positive sign in WALS. HWALS

finds that being more open has a positive impact on growth, while all variables in the

trade policy indices have a negative sign in WALS; and HWALS finds that African

and Latin American countries generally grow slower and British colonial countries

grow faster, while WALS reports the opposite. The HWALS estimates reflect the

fact that 45% of Latin American countries and 86% of Sub-Saharan African countries

achieve growth rates below or around the first quartile, while 52% of British colonial

countries achieve above-average growth rates.

For the education group, HWALS produces a negative (but not significant) esti-

mate. This seems counterintuitive. Upon closer inspection we see that the education

group contains many variables which are not robust and have relatively large stan-

dard deviations. We have nine education variables, and they measure education in

21



three ways: the enrollment rate at different school levels (variables 5–7); educational

attainment at different school levels (variables 9–13); and public spending on ed-

ucation (variable 8). Only the primary schooling enrollment rate in 1960 and the

secondary school years have robust positive effects, while the signs of the remain-

ing variables vary with the model specification. This is in line with most empirical

growth literature, although some care needs to be taken in explaining the strongly

positive estimate of primary schooling in 1960 (Barro and Lee, 1993). The variation

between different measurements and the insignificance of most measurements lead

to an insignificant estimate of the education group. Therefore, the education effect

on growth appears to be inconclusive, in line with current literature.

Comparing HWALS to BACE, we find three type I groups that are partially

different (education, democracy, trade policy indices), and nine variables of type II

groups that are totally different. The signs of the HWALS estimates are mostly in

line with the estimates produced by only including one variable for each concept in

a regression (not multiple variables for one concept). For example, BACE produces

opposite effects of political rights and civil liberties, while HWALS finds a negative

effect (b = 0.0025, t = 0.9) of democracy (recall that civil liberties is re-signed, so

that a positive sign implies a negative effect), supporting the argument of Barro

(1996). The HWALS estimate is in line with the HWALS estimates of political

rights (b = 0.0028, t = 1) and civil liberties (b = 0.0022, t = 0.9) if we include each

variable separately. However, if both variables are included simultaneously, then we

obtain much smaller estimates of both variables (0.0022 for political rights, 0.0011

for civil liberties) and large variances due to high correlation (r = 0.8237). Also

in contrast to BACE, HWALS finds a positive correlation between growth and the

European dummy, and concludes that a larger fraction of GDP in mining leads to a
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lower growth rate, which is supported by most cross-country studies on the ‘resource

curse’. Finally, countries with more land area near navigable water have access to

more convenient transportation and are typically more open, thus enhancing growth,

as shown by HWALS but not by BACE.

Precision comparisons

Next we compare the t-ratios produced by HWALS-F8, WALS, and BACE (uncon-

ditional moments). The WALS and BACE t-ratios are largely similar. HWALS is

generally more precise than WALS and BACE, especially for those groups/variables

that are typically thought of as robust determinants.

For the focus groups, HWALS reports t = 1.26 for health, while the t-ratios of the

two health variables (life expectancy and malaria prevalence) are 0.53 and −0.48 in

WALS; and 0.45 and −0.53 in BACE. In the group ‘tropics effect’, the t-ratios of its

three variables vary greatly in both WALS and BACE. Only the fraction of tropical

area has a t-ratio slightly larger than 1 (in absolute value) in BACE, while the other

two measurements all have |t| < 0.30. WALS even reports a counterintuitive positive

effect. In contrast, HWALS combines three variables and gives a t-ratio for this group

of approximately 1. The estimate of ‘ethnolinguistic fractionalization’ produced by

HWALS has |t| = 1.07, while WALS and BACE show |t| = 0.22 and |t| = 0.30,

respectively.

For the auxiliary groups, most estimates of type I and type II growth determinants

produced by HWALS are more precisely estimated than in WALS and BACE (for

example, demographic characteristics, inflation, and the scale effect).
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Explanatory power

Particularly relevant is the contribution of various growth theories in explaining

differences in cross-country growth rates. Since all variables are converted to the

same scale, the estimates capture the explanatory power of each theory.

We find that the relative price of investment (b = −0.0041, |t| = 2.4) and the

East Asian dummy (b = 0.0058, |t| = 2.1) are the most robust variables and explain

much of the cross-country variation. Less robust but stronger in explanatory power is

health (b = 0.0073, |t| = 1.3). Even less robust but still strong in explanatory power

are initial state (b = −0.0045, |t| = 0.7) and the colony dummy (b = −0.0038, |t| =

1.1). These results provide evidence in favor of the neoclassical growth determinants,

and they are also largely consistent with the findings in the conditional convergence

literature and other related studies (Fernández et al., 2001; Sala-i-Martin et al., 2004;

Durlauf et al., 2008b).

The groups tropics effect, ethnicity and language, African dummy, and terms of

trade have slightly less explanatory power. Here our results differ from those in Sala-

i-Martin et al. (2004) based on posterior inclusion probabilities: economic growth is

not found to be robustly related to education or relative government size.

Data-dependent priors

The last column in Tables 3 and 4 presents HWALS-F8 estimates using data-dependent

priors with one-step updating. (The updated priors and results of two-step updat-

ing are presented in Magnus and Wang (2014).) By construction, the two updating

methods give the same updated prior probabilities for the focus variables, but they

differ in the computation of the updated prior probabilities for the auxiliary vari-

ables. The differences are small except for demographic characteristics and the scale
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effect. The estimates produced by the two updating procedures generally have sim-

ilar magnitudes and the same signs (except terms of trade ranking, Latin American

dummy, and fraction of land area near water). The exceptions all have a very weak

effect on growth. The robustness of the updated probabilities and the resulting es-

timates confirms that model specification only has a marginal effect in the updating

procedure.

We compare the HWALS-F8 results after updating the priors with the equal

probability default. There is a big difference between focus and auxiliary groups.

In the focus groups (especially education), the effects are generally different and

stronger when the priors are updated than in the equal probability case. The reason

lies in the fact that all focus groups have a dominant variable, while most auxiliary

groups have equally important variables. For example, the large variation in updated

prior probabilities (ranging from 0.978 to 0.003) in the education group shows that

some variables in this group are much more relevant for economic growth than others.

The ordering is generally in line with findings in other studies, e.g. Sala-i-Martin

et al. (2004) and Magnus et al. (2010). Generally, the most relevant variables also

have the highest posterior inclusion probability (Sala-i-Martin et al., 2004), or are

the most significant (Magnus et al., 2010) compared to other variables in the same

group.

In the auxiliary groups (such as democracy), the estimates and standard devia-

tions when updating the priors are mostly in line with those using equal probabilities.

As discussed above, this is because the variables in most auxiliary groups are almost

equally important, so that their updated prior probabilities are close. The variables

in these groups are highly correlated, and hence including all variables in one regres-

sion leads to very unprecise estimates for some or all of the variables. Thinking in
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terms of groups rather than in terms of variables thus provides new insights.

Effect of different groupings

Our empirical results are based on the grouping in Tables 1 and 2. These groupings

can of course be questioned and we briefly discuss the effect of alternative groupings.

More detailed results are presented in our supplementary document (Magnus and

Wang, 2014).

Initial state. In the ‘initial state’ group we separate the two variables GDP per

capita in 1960 and the initial size of the economy, motivated by the neoclassical

growth model where initial GDP per capita has a structural role and thus should

always be included (Mankiw et al., 1992). We thus treat GDP per capita in 1960 as

a focus variable and the initial size of the economy as auxiliary. Since the initial level

of income is now always included, the estimated coefficients should be interpreted

as the effects of determinants of the height of the steady-state growth path, rather

than as the effects of long-run growth determinants. The new grouping leads to an

estimated coefficient of the initial level of income (b = −0.0098), which is much larger

in absolute value and has a smaller variance (V = 0.0053), making initial income

an important determinant and providing strong evidence of convergence. Results of

other focus groups and most auxiliary groups are not greatly affected.

Education. Education is a difficult concept to measure and our grouping can be

easily criticized. We discuss four alternative groupings:

(i) Separate public education spending from the education group;

(ii) Assign public education spending to the relative government size group;
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(iii) Distinguish between education flows and stocks by separating enrollment rates,

attainment levels, and public education spending in three groups; and

(iv) Distinguish between lower and higher education level by separating primary

and secondary education, higher education, and public education spending in

three groups.

The results confirm the large variation of education variables as well as their distinct

effects on growth. Growth is only weakly related to various aspects of education

(flows versus stocks, lower versus higher level), with the exception of primary school-

ing.

Tropics effect. Separating latitude from tropic effect group hardly affects the re-

sults.

VI. Approximations for large k

To compute the HWALS estimates we need many runs of the WALS algorithm. Each

run requires model averaging over k2 = 41 (HWALS-F1) or k2 = 34 (HWALS-F8)

auxiliary variables. In the case of BMA this would take much computing time (of

the order 2k2), but in WALS much less (of the order k2). This is one (but not the

only one) advantage of WALS over BMA. Even so, in our application of the HWALS

procedure, we have to repeat this algorithm 29 × 3 × 5 × 9 = 69120 times. This

would be impossible with BMA or BACE, but it is still feasible in WALS, and the

estimates reported in Tables 3 and 4 are based on exact computations.

If the number of groups and variables increases further, then estimating all com-

binations (i, j) becomes computationally too time-consuming, especially if we also
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want to perform simulations and sensitivity analyses. In such cases we have to resort

to approximations. In this section we propose and compare several approximating

algorithms. There are two aspects to the approximation: selecting the subset of

regressions (Equation (8)) from all combinations and obtaining the corresponding

WALS estimates for each regression; and assigning estimates to the non-sampled

regressions based on the estimates of the sampled regressions. We shall discuss each

aspect in turn.

Subset selection

Two types of subset selection are considered: non-probability sampling and proba-

bility sampling. The non-probability method chooses the combinations determinis-

tically. We sample those combinations whose prior probabilities (weights) are larger

than a predetermined critical value π∗, because these are the combinations com-

posed of relatively ‘important’ variables in each group. We obtain WALS estimates

for these combinations. The ‘precision’ of the approximation is controlled by

α =
∑

π(i,j)>π∗

π(i,j),

representing the sum of the prior probabilities of the exact estimates used in the

approximated HWALS computation. We use two stopping rules. First, we reduce

π∗ until the precision α satisfies a required level α∗. Second, to bound computation

time, we restrict the number of samples S by an upper bound S∗. Hence, we require

α > α∗ and S < S∗.

In contrast, the probability method uses the prior probabilities as weights and

draws randomly (without replacement) based on these weights. Each combination

can now be selected, but combinations with a high weight will have a higher selection

probability than combinations with a low weight. The only requirement is S < S∗.
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Approximating the non-sampled estimates

We consider two methods to approximate the non-sampled estimates from the sam-

pled ones, first using neighboring estimates, then using a normalization of the prob-

ability. The first method is based on ‘neighboring’ estimates. For a given combina-

tion C, its ‘neighbors’ consist of those combinations containing at least one group

represented by a variable that is also present in C. The approximation averages

the neighboring estimates. Neighboring estimates are good approximations because

changing the measurement of a group has a much smaller impact on estimates of

other groups (indirect effect) than it does on the group itself (direct effect).

In the second method we normalize the probability of the sampled combinations,

so that the sum of these probabilities equals 1, that is,

π(i,j)
∗ =

π(i,j)

∑

(m,n)∈C π
(m,n)

, (i, j) ∈ C, (16)

where C is the set of sampled combinations. From Equation (16) we see that estimates

of more important samples contribute more to the approximations. The second

method thus uses not only closely related information (neighboring estimates), but

also less related information (non-neighboring estimates). It is not a priori clear

whether this is good or bad, and we shall investigate the issue below.

Comparison of the methods

We now have four methods for the approximation procedure, as follows:

Approximating method

Sampling method Ave. neighbor Norm. probability

Non-probability Method 1 Method 2

Probability Method 3 Method 4
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We compare the four methods from two aspects: approximation accuracy and com-

putation time. For approximation accuracy our criterion is the average absolute

deviation from the estimates obtained from the whole sample.
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Figure 1: Approximation accuracy: four methods

Figure presents the convergence of the approximation accuracy for each of the

four methods. Average absolute deviations decrease smoothly for non-probability

methods, but less smoothly for probability methods because of the randomness.

Comparing different approximating techniques, we find that Method 2 has higher

approximation accuracy and needs less computation time than Method 1; and simi-

larly that Method 4 has higher approximation accuracy and needs less computation

time than Method 3. Apparently the normalization method strictly dominates the

method using neighboring estimates, and this domination is especially strong when
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the number of samples is small. Next, when we compare different sampling tech-

niques, we see that no method strictly dominates another. When the number of

samples is small, Method 4 is more accurate than Method 2, but it is less accurate

when the number of samples is large, thus reflecting the trade-off between using the

more important estimates and a wider range of estimates.

The computation time is roughly proportional to the number of samples, so that

computation time can be predicted for each method. In fact, the ratio

Computation time (in seconds)

number of samples/100

is approximately 1.5 (Method 3), 1.2 (Method 4), 1.0 (Method 1), and 0.7 (Method 2).

The computation time is higher for probability sampling than for non-probability

sampling, because randomness is time-consuming.

In summary, Methods 2 and 4 dominate Methods 1 and 3. When the number of

samples is relatively small, Method 4 is preferred, but when the number of samples

is relatively large, then Method 2 is preferred.

VII. Conclusions

Applied researchers frequently encounter the situation where there is more than

one measurement (variable) for a concept (group). To include all variables of the

group in the regression is not satisfactory, because of multicollinearity. To choose

between variables based on diagnostics leads to pretesting problems. A satisfactory

solution can be obtained through two-level (hierarchical) Bayesian model averaging,

where we question which groups should be in the model (level 1) and also which

variables should be in each group (level 2). Our proposed method (HWALS) is an

attempt to obtain estimates and standard deviations that fully reflect three sources of
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uncertainty: uncertainty represented by the error term, given the specification of the

model; uncertainty about which (auxiliary) groups to include; and uncertainty about

which variables to include in each group. Our method combines model selection and

estimation and thus avoids the problem of pretesting. It is transparent, easy to

implement, and computationally efficient compared to standard methods such as

BMA and BACE. The method provides one estimate and standard deviation for

each group (concept) rather than several estimates corresponding to each variable

(measurement), and this facilitates statistical inference and interpretation of the

effect of the concept. The hierarchical structure also allows us to assign various types

of priors, depending on the strength of the researchers’ beliefs. Unlike factor analysis,

HWALS allows clear economic explanations, because the data are not transformed

(except for simple scaling).

We apply the HWALS theory to growth empirics, and study the effects of different

growth theories in explaining cross-country growth. This application is particularly

suitable, because open-ended growth theories and the many possible proxies for the

same concept expose growth regressions to a high degree of model uncertainty. The

HWALS estimates appear to possess more intuitive signs and are generally more

significant compared to other methods. Our findings regarding the robust and im-

portant determinants are mostly in line with the literature. A notable difference

from the literature is that the education and relative government size effects are not

robust, reflecting the large variation between variables in these two groups.

Extensive sensitivity analysis is provided with respect to the prior probabilities

and grouping, from which we conclude that the main results, especially the estimates

of robust and important determinants, are not sensitive. Also provided are methods

of approximation when the number of groups or variables is large. The experimen-
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tal results show that computation time can be much reduced while still obtaining

estimates satisfying a given level of accuracy.

Generalizations in various directions are possible. For example, non-linear models

can be incorporated by adjusting the estimation method in the first-level averaging.

The idea of hierarchical averaging can also be applied to other situations involv-

ing more than one level of uncertainty, such as model uncertainty with occasional

structural breaks.

References

Barro, R. J. (1996). ‘Democracy and growth’, Journal of Economic Growth, Vol. 1,

pp. 1–27.

Barro, R. J. (1999). ‘Determinants of democracy’, The Journal of Political Econ-

omy, Vol. 107, pp. S158–S183.

Barro, R. J. and Lee, J.-W. (1993). ‘International comparisons of educational at-

tainment’, Journal of Monetary Economics, Vol. 32, pp. 363–394.

Brock, W. A. and Durlauf, S. N. (2001). ‘Growth empirics and reality’, World Bank

Economic Review, Vol. 15, pp. 229–272.

Brock, W. A., Durlauf, S. N., and West, K. D. (2003). ‘Policy evaluation in uncer-

tain economic environments’, Brookings Papers on Economic Activity, pp. 235–

301.

Chipman, H. (1996). ‘Bayesian variable selection with related predictors’, The

Canadian Journal of Statistics, Vol. 24, pp. 17–36.

33
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TABLE 1
Grouping of variables: Type I groups

g Group v Variable
(1) Demographic characteristics 1 Fraction population over 65

2 Fraction population under 15

(2) Economic system 3 Capitalism
4 Socialism

(3) Education 5 Primary schooling (1960 enrollment rate)
6∗ Secondary schooling (1960 enrollment rate)
7 Higher education (1960 enrollment rate)
8 Public education spending share in GDP in 1960s
9∗ Primary school years
10∗ Secondary school years
11∗ Higher education years
12∗ Average years of schooling
13∗ Average years of schooling × log of GDP per capita

(4) Relative government size 14 Public investment share
15∗ Public consumption share (excl. education and defense)
16 Government consumption share in 1960s
17 Government share of GDP in 1960s
18 Nominal government GDP share in 1960s

(5) Health 19 Life expectancy in 1960
20 Malaria prevalence in 1960s

(6) Inflation 21 Average inflation 1960–1990
22 Square of inflation 1960–1990

(7) Initial state 23 GDP per capita in 1960 (log)
24 Size of economy (GDP in 1960)

(8) Democracy 25 Political rights
26 Civil liberties

(9) Scale effect 27 Land area
28 Population in 1960

(10) Trade policy indices 29 Outward orientation
30 Years open

(11) Tropics effect 31 Fraction of tropical area
32 Tropical climate zone
33 Absolute latitude

(12) War 34 Fraction spent in war 1960–1990
35 War participation 1960–1990

Notes: Variables that are not in the Sala-i-Martin et al. (2004) data set, but taken from Sala-i-
Martin (1997) are indicated by a star (*). Group (8) is called ‘Democracy’ following Barro (1999).



TABLE 2
Grouping of variables: Type II groups

g Group v Variable
(13) Ethnicity and language 36∗ Ethnolinguistic fractionalization

37 English-speaking population
38 Fraction speaking foreign language

(14) Religion 39 Fraction Confucian
40 Fraction Muslim
41 Fraction Buddhist
42 Fraction Protestant
43 Fraction Hindu
44 Fraction Catholic
45 Fraction Orthodox
46∗ Religious intensity

(15) Trade statistics 47∗ Openness measure 1965–1974
48 Primary exports in 1970

(16) Terms of trade 49 Terms of trade ranking
50 Terms of trade growth in 1960s

(17) Regional effect 51 East Asian dummy
52 African dummy
53 European dummy
54 Latin American dummy
55 Colony dummy
56 British colony
57 Spanish colony

(18) Natural resources 58 Hydrocarbon deposits in 1993
59 Fraction GDP in mining
60 Oil-producing country dummy

(19) Population 61 Population density coastal in 1960s
62 Interior density
63 Fraction population in tropics
64 Population density in 1960
65 Population growth rate 1960–1990
66 Fertility in 1960s

(20) Geography (excl. tropics effect) 67 Fraction land area near navigable water
68 Landlocked country dummy
69 Air distance to big cities

(21) Price distortion 70 Investment price
(22) Real exchange rate 71 Real exchange rate distortions
(23) Defense 72 Defense spending share
(24) Political instability 73 Revolutions and coups
(25) Independence 74 Timing of independence

Notes: The representative variable of a group is indicated by a star (*).



TABLE 3
HWALS and WALS estimates: Focus variables

Variable WALS-F8 HWALS-F8
Uniform prior Data-dep. prior

Education −0.0013 (0.0046) 0.0051 (0.0034)
5 Primary schooling 0.0037 (0.0188)
6 Secondary schooling∗

7 Higher education −0.0079 (0.0081)
8 Public edu. spending −0.0007 (0.0160)
9 Primary school yrs∗

10 Secondary school yrs∗

11 Higher education yrs∗

12 Ave. school yrs∗

13 Ave. school yrs × logGDP∗

Health 0.0073 (0.0058) 0.0062 (0.0059)
19 Life expectancy 0.0144 (0.0271)
20 Malaria prevalence −0.0045 (0.0094)

Initial state −0.0045 (0.0064) −0.0084 (0.0057)
23 GDP in 1960 (log) −0.0073 (0.0168)
24 Size of economy 0.0006 (0.0186)

Tropics effect −0.0030 (0.0034) −0.0041 (0.0034)
31 Frac. of tropical area 0.0015 (0.0207)
32 Tropical climate zone 0.0013 (0.0047)
33 Absolute latitude 0.0054 (0.0195)

Ethnicity and language
36 Ethnolinguistic frac. −0.0019 (0.0087) −0.0030 (0.0028) −0.0022 (0.0026)
37 English-speaking pop. 0.0014 (0.0053)
38 Frac. foreign language 0.0006 (0.0062)

Religion
39 Fraction Confucian 0.0009 (0.0058)
40 Fraction Muslim −0.0004 (0.0079)
41 Fraction Buddhist 0.0010 (0.0132)
42 Fraction Protestant −0.0122 (0.0161)
43 Fraction Hindu 0.0003 (0.0074)
44 Fraction Catholic −0.0130 (0.0226)
45 Fraction Orthodox −0.0014 (0.0029)
46 Religious intensity −0.0035 (0.0095) −0.0015 (0.0019) −0.0022 (0.0018)

Price distortion
70 Investment price −0.0047 (0.0076) −0.0041 (0.0017) −0.0046 (0.0015)

Notes: A star (*) indicates that the variable is not in the Magnus et al. (2010) data set, so that
no estimate for WALS-F8 is provided.
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TABLE 4
HWALS and WALS estimates: Auxiliary variables

Variable WALS-F8 HWALS-F8
Uniform prior Data-dep. prior

Demographic characteristics 0.0027 (0.0048) 0.0026 (0.0044)
1 Frac. pop. over 65 −0.0011 (0.0204)
2 Frac. pop. under 15 −0.0003 (0.0324)

Economic system −0.0010 (0.0016) −0.0007 (0.0015)
3 Capitalism 0.0018 (0.0056)
4 Socialism −0.0000 (0.0067)

Relative government size −0.0003 (0.0021) 0.0005 (0.0020)
14 Public investment share 0.0016 (0.0044)
15 Public consumption share (excl. education and defense)∗

16 Gov. consumption share −0.0367 (0.1602)
17 Gov. share of GDP 0.0362 (0.1489)
18 Nominal gov. GDP share 0.0001 (0.0078)

Inflation 0.0005 (0.0022) 0.0004 (0.0019)
21 Average inflation 0.0042 (0.0179)
22 Square of inflation −0.0064 (0.0200)

Democracy 0.0025 (0.0027) 0.0015 (0.0024)
25 Political rights 0.0047 (0.0102)
26 Civil liberties 0.0002 (0.0075)

Scale effect 0.0028 (0.0028) 0.0018 (0.0024)
27 Land area 0.0063 (0.0157)
28 Population 0.0005 (0.0086)

Trade policy indices 0.0009 (0.0024) 0.0009 (0.0026)
29 Outward orientation −0.0008 (0.0055)
30 Years open −0.0032 (0.0104)

War 0.0001 (0.0016) −0.0003 (0.0015)
34 Frac. spent in war 0.0004 (0.0067)
35 War participation 0.0022 (0.0086)

Trade statistics
47 Openness measure −0.0004 (0.0147) 0.0006 (0.0029) −0.0003 (0.0025)
48 Primary exports −0.0026 (0.0104)

Terms of trade
49 Terms of trade ranking 0.0028 (0.0084) 0.0004 (0.0027) 0.0002 (0.0024)
50 Terms of trade growth 0.0026 (0.0058) 0.0035 (0.0024) 0.0021 (0.0022)

Regional effect
51 East Asian dummy 0.0087 (0.0108) 0.0058 (0.0028) 0.0046 (0.0025)
52 African dummy 0.0017 (0.0117) −0.0031 (0.0036) −0.0020 (0.0032)
53 European dummy 0.0198 (0.0247) 0.0015 (0.0045) 0.0009 (0.0040)
54 Latin American dummy 0.0125 (0.0258) −0.0014 (0.0046) −0.0002 (0.0042)
55 Colony dummy −0.0023 (0.0155) −0.0038 (0.0035) −0.0040 (0.0031)
56 British colony −0.0003 (0.0071) 0.0028 (0.0027) 0.0022 (0.0026)
57 Spanish colony −0.0015 (0.0152) 0.0012 (0.0033) 0.0007 (0.0031)
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TABLE 4
HWALS and WALS estimates: Auxiliary variables, continued

Natural resources
58 Hydrocarbon deposits 0.0015 (0.0053) 0.0001 (0.0019) 0.0005 (0.0017)
59 Frac. GDP in mining −0.0016 (0.0072) −0.0013 (0.0019) −0.0012 (0.0017)
60 Oil country dummy −0.0020 (0.0052) −0.0018 (0.0023) −0.0004 (0.0021)

Population
61 Population density coastal 0.0019 (0.0172) 0.0007 (0.0030) 0.0026 (0.0025)
62 Interior density −0.0025 (0.0070) −0.0010 (0.0017) −0.0008 (0.0015)
63 Fraction pop. in tropics 0.0003 (0.0092) 0.0015 (0.0032) 0.0009 (0.0028)
64 Population density −0.0032 (0.0060) −0.0015 (0.0021) −0.0009 (0.0018)
65 Population growth rate 0.0073 (0.0232) 0.0014 (0.0054) 0.0003 (0.0047)
66 Fertility 0.0007 (0.0224) −0.0030 (0.0063) −0.0006 (0.0052)

Geography (excl. tropics effect)
67 Frac. land area near water 0.0018 (0.0118) 0.0016 (0.0032) 0.0001 (0.0030)
68 Landlocked country dummy 0.0027 (0.0040) 0.0002 (0.0018) −0.0003 (0.0016)
69 Air distance to big cities 0.0009 (0.0102) 0.0010 (0.0025) −0.0001 (0.0023)

Real exchange rate
71 Real exchange rate dist. −0.0031 (0.0107) −0.0021 (0.0020) −0.0019 (0.0019)

Defense
72 Defense spending share −0.0145 (0.0599) −0.0004 (0.0017) −0.0007 (0.0016)

Political instability
73 Revolutions and coups 0.0043 (0.0064) −0.0006 (0.0018) −0.0003 (0.0017)

Independence
74 Timing of independence −0.0001 (0.0110) 0.0008 (0.0025) 0.0010 (0.0023)

Notes: A star (*) indicates that the variable is not in the Magnus et al. (2010) data set, so that
no estimate for WALS-F8 is provided.

41


