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1 Introduction

The benefits of forecast combination are well known and well documented; see
Timmermann (2006) for an exhaustive literature review and Elliott and Timmer-
mann (2016) for a recent and detailed treatment. The recent M4 competition
by Makridakis et al. (2018) shows that the overwhelming majority of the most
accurate methods are combinations. It is quite likely that combinations will be-
come default forecasting methods and benchmarks in the forecasting literature
that follows the M4 competition.

The issue of negative weights (or weights outside the [0, 1] interval1) that can
emerge when combining forecasts is largely ignored in the forecast combination
literature. Negative weights are usually set to zero either after estimation (see,
e.g., Smith and Wallis, 2009) or using an optimization constraint (see, e.g., Post
et al., 2019). Throughout this paper, we will refer to those approaches as trimming.
While it often results in better empirical performance of the combined forecast,
its theoretical properties have not been studied. In which situations can trimming
improve the combined forecast? Is it always optimal to trim weights to zero? If
not, how do we determine the optimal trimming threshold?

This paper offers the first comprehensive study of the negative weights and
trimming. First, we study the theoretical conditions for negative weights to emerge
in the unconditional framework of Bates and Granger (1969) and in the condi-
tional framework of Gibbs and Vasnev (2018). In the unconditional framework,
the negative weights are driven by high positive correlations. In the conditional
framework, the same effect can also be observed if several forecasts conditionally
under- or overestimate the true value. This interpretation is the most natural
explanation for the negative weights to appear in practice. Another important
observation is that the region where negative values are theoretically optimal is
unstable, i.e., a small estimation error of the underlying parameters can result in
significant changes in the weights and the forecast.

We then investigate the effect of estimation and trimming using the framework
of Claeskens et al. (2016) and find the usual tradeoff between variance and bias.
The positive effect of trimming comes from the reduction in the variance of the
estimated weights, i.e., stabilization, but the threshold of zero is arbitrary and can
be improved. We investigate five different versions of trimming: three two-step
methods where the optimal weights are estimated and then trimmed, and two
one-step methods where the trimming constraint is imposed in the estimation.
Our fifth version is based on the portfolio selection method with gross-exposure
constraints by Fan et al. (2012). While this method has been used in portfolio

1Cases with negative weights and weights larger than 1 are symmetric, so without loss of
generality, we concentrate on the case of negative weights.
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management (see, e.g., Ledoit and Wolf, 2017; Fan et al., 2016), we are the first to
apply it to forecast combination and to derive the asymptotic distribution of the
estimated weights, which is of interest in its own right.

Finally, as we find in a simulation study that the default strategy of trimming
weights at zero is rarely optimal, we propose an optimal trimming threshold, i.e.,
an additional tuning parameter to deliver better forecasting performance. The new
optimal trimming delivers solid improvements in our empirical application using
the European Central Bank Survey of Professional Forecasters. In many cases,
the optimal threshold is different from zero, and even a small relaxation can result
in improvements above 10% relative to the traditional approach of trimming at
zero. Using the optimal threshold can deliver improvements of more than 10%
for inflation, up to 20% for GDP growth, and more than 20% for unemployment
forecasts relative to the equal-weight benchmark (which is often used in practice).

The remainder of this paper is organized as follows. In Section 2, we inves-
tigate the issue of negative weights in the classical unconditional framework of
Bates and Granger (1969), assuming that the weights are fixed. In Section 3, we
extend our analysis to the conditional framework of Gibbs and Vasnev (2018). In
Section 4, we obtain additional insights from the regression framework of Granger
and Ramanathan (1984). In Section 5, we analyse the properties of the forecast
combination when the weights are estimated and the estimation is explicitly taken
into account as in Claeskens et al. (2016). Our suggestion for the optimal threshold
is given in Section 6. Section 7 provides a simulation study similar to Smith and
Wallis (2009). Section 8 presents an empirical illustration similar to Matsypura
et al. (2018), and some concluding remarks are offered in Section 9. All proofs are
provided in Appendix A, additional empirical results are in Appendix B, and ad-
ditional simulation results are in Appendix C. The code for all methods proposed
in this paper is freely available online2.

2 Classical framework

This section investigates what drives the weights to be negative in the classical

framework of Bates and Granger (1969). We first analyze combinations with two
candidate forecasts in Section 2.1 to shed light on the intuition in Section 2.2 and
then consider the general case with multiple forecasts in Section 2.3. Despite the
possibility of negative weights, we maintain the restriction that all weights sum to
one in this section.

2https://bit.ly/2PkTTKn
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2.1 Negative weights in the case of two forecasts

We consider a linear combination of two forecasts y1 and y2 of an event µ:

yc = wy1 + (1− w)y2.

If the weight w is regarded as fixed, then the forecast combination is unbiased
(E yc = µ) if the original forecasts are unbiased, and the variance of the combina-
tion is

var(yc) = w2σ2
1 + (1− w)2σ2

2 + 2w(1− w)ρσ1σ2, (1)

where σ2
1 and σ2

2 are the variances of y1 and y2, respectively and ρ = corr(y1, y2)
denotes the correlation. The optimal weight that minimizes var(yc) is

w∗ =
σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
. (2)

The theoretical results in this subsection are well known and derived in Bates and
Granger (1969). We simply adopt them for our notation and present them visually
in Figure 1.

For visual analysis, it is practical to study how w∗ depends on ρ (the correlation
between the two forecasts) and σ1/σ2 (the ratio of their variances). To this end,
we rewrite w∗ as

w∗ =
1− ρ(σ1/σ2)

(σ1/σ2)2 + 1− 2ρ(σ1/σ2)
. (3)

Figure 1(a) depicts the three-dimensional plot of the optimal weight w∗ as a func-
tion of ρ and σ1/σ2, and the view of this surface from the top is presented in
Figure 1(b). Area [1] indicates the region where w∗ is negative, and area [4] indi-
cates the region where w∗ is larger than 1 (implying that the weight of the second
forecast (1 − w∗) is negative). The nonnegative weights are in area [2], where
0 < w∗ < 1/2, and in area [3], where 1/2 < w∗ < 1. The lines on the surface
indicate border cases. The line dividing [1] and [2] corresponds to w∗ = 0, the line
dividing [2] and [3] to w∗ = 1/2 and σ1 = σ2, and the line dividing [3] and [4] to
w∗ = 1.

Figures 1(a) and 1(b) show how ρ and σ1/σ2 determine the values of optimal
weights and reveal several interesting situations. First, negative optimal weights
emerge when the correlation between the two forecasts is positive and large, i.e.,
w∗ < 0 if ρ > σ2/σ1, or alternatively, 1 − w∗ < 0 if ρ > σ1/σ2. In contrast, the
optimal weights are always positive (between 0 and 1) when the correlation ρ is
zero (or negative). Second, when the correlation equals the variance ratio, one of
the forecasts is not selected into the combination, i.e., w∗ = 0 if ρ = σ2/σ1, and
w∗ = 1 if ρ = σ1/σ2. If the variance of one of the forecasts approaches zero, then
the combination simply selects that forecast, e.g., w∗ → 1 when σ1/σ2 → 0.
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(a) Optimal weight w∗ as a function of ρ and
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Finally, a discontinuity is observed when σ1 = σ2 and ρ = 1. Figure 1(d)
depicts the optimal weight w∗ = 1/(1 − σ1/σ2) for perfectly correlated forecasts
(ρ = 1). The optimal weight is always outside the [0, 1] interval. When we go
from situation σ1 < σ2 to situation σ1 > σ2, the weight flips from positive to
negative. The area close to the discontinuity, i.e., when ρ is close to 1 and the
variance σ1 and σ2 are close to each other, is very unstable, with minor changes in
the parameters resulting in large changes in w∗; see Winkler and Clemen (1992)
for the sensitivity analysis of the weight function given by (3).

The variance of the optimal forecast can be analysed in a similar way. Fig-
ure 1(c) shows the scaled version of the variance surface as a function of ρ and
σ1/σ2:

(σ∗
c )

2/σ2
1 =

1− ρ2

(σ1/σ2)2 + 1− 2ρ(σ1/σ2)
.

This theoretical surface is well behaved (and the combination always has superior
properties) even in the regions when the optimal weight w∗ is outside the [0, 1]
interval. However, this behaviour is not evidenced in the empirical and simulation
literature, as the surface is distorted when w∗ has to be estimated, which will be
covered in Section 5.

2.2 Intuition behind negative weights

We understand from Section 2.1 that negative weights emerge when the correlation
between the forecasts is high. We now explore why negative weights are useful in
this situation. In the two-forecast framework, a negative weight implies that the
combined forecast lies outside the range bounded by the two forecasts, which can
be particularly useful when both forecasts over- or underestimate the event. This
intuition can be best illustrated in the following special cases.

First, we consider the case of perfectly correlated forecasts, i.e., ρ = 1, and
we assume σ1 > σ2 without loss of generality. Then, the optimal weight that
minimizes var(yc) is always negative and given by

w† = − σ2

σ1 − σ2

.

In this situation, y1 and y2 essentially contain the same information, but y1 is less
reliable and farther away from µ due to its higher variance. In other words, both
forecasts over- or underestimate µ, providing enough evidence to choose yc < y2
if y2 < y1 (overestimation case) or to choose yc > y2 if y2 > y1 (underestimation
case).3 The purpose of the negative weight is to obtain a combined forecast yc

3Sometimes it is better to ignore y1. For example, if y2 = µ + σ2ǫ2 and y1 = y2 + ǫ1 (with
uncorrelated ǫ1 and ǫ2, i.e., there is no new information in y1 but only additional noise), then
the optimal weight w∗ = 0 and yc = y2, which is a sufficient statistic for µ.
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that lies outside the range bounded by y1 and y2.
Next, we consider the case in which the two forecasts are positively but not

perfectly correlated, i.e., 0 < ρ < 1, and when the optimal weight is moderately
negative, i.e., −1 < w∗ < 0. Assume that y1 < y2 without loss of generality.
The negative optimal weight implies that 1 > ρ > σ2/σ1, further suggesting that
σ2 << σ1. Due to its large variance and high correlation with y2, y1 provides
limited extra information and appears less reliable than y2. Thus, both forecasts
underestimate µ, and a good forecast should be greater than y2. On the other hand,
given that −1 < w∗ < 0, y1 is still useful because it indicates how much we need to
correct y2 and contributes to defining the upper bound of the combined forecast.
In this case, the benefit of negative weights can be illustrated by rearranging
yc = w∗y1 + (1− w∗)y2 as

yc = w̄∗yd + (1− w̄∗)y2,

where w̄∗ = −w∗ ∈ [0, 1] and yd = y2+(y2− y1). Here, yd can be interpreted as an
upper bound for yc given the information of y1 and y2. Now, yc can be regarded
as a combination of y2 and yd with weights in the [0,1] interval, as demonstrated
in Figure 2.4

Figure 2: Rearrangement of combined forecasts with negative weights

✲

︸ ︷︷ ︸
y2 − y1

✉

y2
✉

y1
✉

yd

Alternatively, one can also rewrite yc as yc = y2 + w̄∗(y2 − y1), which explicitly
shows that the combination should not be located between y1 and y2 because y1
underestimates µ more than y2, but the difference y2− y1 provides information on
the magnitude of correction. The geometry of this rearrangement is transparent in
the special case when one forecast is a linear function of the other and presented
in Figure 3. Further examples can be found in Magnus and De Luca (2016), in
their Section 5, including a practical problem of inflation forecast. However, in
the main part of their analysis, Magnus and De Luca (2016) submit to the general
practice of keeping weights between zero and one.

4y1 can always play a corrective role as long as the weight is finitely negative. For example,
if −2 < w∗ < −1, then the combination yc comprises between y2 + (y2 − y1) and y2 +2(y2 − y1)
with weights in the [0,1] interval.
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y1 yc

y2

y2

µ

y1 = ay2 − b

A

B

w̄†(y2 − y1)

Figure 3: Two linearly dependent forecasts y1 and y2 are represented by point A
on the solid line y1 = ay2 − b with a > 1. They both underestimate µ, which is
represented by point B. The dashed line represents the 45-degree line that allows
us to project all points on the horizontal axis. In this case, yc = µ = b

a−1
, the

optimal weight w† = − σ2

σ1−σ2

= − 1
a−1

, and w̄† = 1
a−1

.

2.3 Negative weights in the case of multiple forecasts

We now consider the multivariate case when n forecasts are available to combine.
Denote the vector of forecasts y = (y1, . . . , yn)

′ and the vector of fixed weights
w = (w1, . . . , wn)

′ that sum to one. If the original forecasts are unbiased and have
variance Σ, then the linear combination

yc = w′y

is unbiased and has variance w′Σw, which has a minimum at

w∗ =
Σ−1ı

ı′Σ−1ı
,

where ı is the vector of ones.
Without loss of generality, we assume that all negative weights are collected at

the beginning of w∗ if there are any, so that we can partition w∗ as

w∗ =

(
w∗

−

w∗
+

)
,

where w∗
+ and w∗

− are the vectors that contain all positive and (possibly) negative
weights, respectively. Accordingly, we can partition the covariance matrix Σ and
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unit vector ı as

Σ =

(
Σ−− Σ−+

Σ+− Σ++

)
and ı =

(
ı−
ı+

)
.

Using the inversion formula for the block matrix Σ, we can derive

w∗
− =

1

ı′Σ−1ı

(
E−1ı− − E−1Σ−+Σ

−1
−−ı+

)
, (4)

where E = Σ−− − Σ−+Σ
−1
++Σ+− is the Schur complement.

We can see that the matrix of cross covariances Σ−+ plays a critical role here.
First, if Σ−+ = 0, then w∗

− cannot be negative, which is similar to the two-
dimensional case with uncorrelated forecasts. Second, if all elements of Σ−+ are
negative, then w∗

− cannot be negative, as all elements of E−1Σ−+Σ
−1
−−ı+ in (4) are

negative. The general condition when all elements of w∗
− are negative is given by

the following proposition.

Proposition 2.1. The vector of optimal weights contains negative elements w∗
− <

0 if and only if E−1ı− < E−1Σ−+Σ
−1
−−ı+ elementwise.

This condition is less intuitive than its two-dimensional version, but even here, we
can observe that large positive elements of Σ−+ will make negative weights more
likely to emerge.

The proposition would be clearer if we considered a special case in which there
is only one negative weight, i.e., w∗

− = w∗
1 < 0 and w∗

+ = (w∗
2, . . . , w

∗
n)

′ > 0
elementwise. In this case,

Σ =

(
σ11 σ′

+−

σ+− Σ++

)

and E = σ11 − σ′
+−Σ

−1
++σ+− is a scalar, where σ′

+− is the covariance between the
y1 and the remaining forecasts (y2, . . . , yn), so Equation (4) can be simplified

w∗
1 =

1− σ′
+−Σ

−1
++ı+

1− 2σ′
+−Σ

−1
++ı+ + Eı′+Σ

−1
++ı+ + (σ′

+−Σ
−1
2++ı+)

2
. (5)

Following Proposition 2.1, we can obtain the condition when the weight w∗
1 is

negative as
w∗

1 < 0 ⇐⇒ 1 < σ′
+−Σ

−1
++ı+.

Here, it is obvious that large positive elements of σ+− will drive the negative
weight. If Σ++ is diagonal, that is, the forecasts y2, . . . , yn are uncorrelated with
each other but correlated with y1 then

σ′
+−Σ

−1
++ı+ =

n∑

j=2

σ1j/σjj =

n∑

j=2

ρ1jσ
1/2
11 σ

1/2
jj /σjj = σ

1/2
11

n∑

j=2

ρ1j/σ
1/2
jj ,
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which can easily exceed 1, especially if n is large.5

An alternative necessary and sufficient condition6 for the existence of negative
weights can be derived using the adjoint matrix. Let Ej be the n× (n− 1) matrix
obtained from the identity matrix In by deleting the jth column. Then E ′

iΣEj is
the (n− 1)× (n− 1) matrix obtained from Σ by deleting row i and column j.

Proposition 2.2. All elements of the vector of optimal weights w∗ are nonnegative

if and only if

(−1)j
n∑

i=1

(−1)i|E ′
iΣEj | ≥ 0 (6)

for all j.

Proof. See Appendix A.

In the special case n = 2, the condition reduces to σ12 ≤ min(σ11, σ22), a well-
known result. In the special case n = 3, the condition can be written in terms of
variances σ2

i = σii and correlations rij =
σij

σiσj
as

(1− r212)σ1σ2 − (r23 − r12r13)σ1σ3 − (r13 − r12r23)σ2σ3 ≥ 0,

−(r23 − r12r13)σ1σ2 + (1− r213)σ1σ3 − (r12 − r13r23)σ2σ3 ≥ 0,

−(r13 − r12r23)σ1σ2 − (r12 − r13r23)σ1σ3 + (1− r223)σ2σ3 ≥ 0.

In general, the above analysis shows that negative weights emerge when can-
didate forecasts are highly and positively correlated. Typically, this occurs when
the forecasts simultaneously over- or underestimate the true value. An important
advantage of negative weights is to correct joint over- or underestimation and allow
the combination to lie outside the range of candidate forecasts in this situation.

3 Conditionally optimal weight framework

Thus far, we have analysed the situations in which negative weights can emerge
in the classical unconditional framework of Bates and Granger (1969). In some
cases, an additional information set is available and can be used to predict the
forecasting errors that further influence the optimal weights. The information set
can include, for example, past forecasting errors or variables that were used or

5Note that, as in all other cases, if the first forecast is uncorrelated with all other forecasts,
i.e., σ+− = 0, then w∗

1 = 1/(1 + σ11ı
′

+Σ
−1
++ı+), which is always inside the [0, 1] interval.

6The authors are extremely grateful to Jan Magnus for suggesting this alternative.
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not used in constructing forecasts. In this section, we investigate what makes the
weights to be negative in the conditional framework of Gibbs and Vasnev (2018),
where this additional information is used to predict forecasting errors.

For the purpose of this presentation, we stay in the framework of combining two
forecasts, but we now need to explicitly introduce time in our notation. Assume
that we need to forecast the future realization of µT+1 and there are two individual
forecasts y1,T and y2,T that are based on the information available at time T .
Similar to the previous section, we use a linear combination yc,T = wy1,T + (1 −
w)y2,T . Assume further that an information set IT is available that can be used
to predict the forecasting errors e1,T+1 = µT+1 − y1,T and e2,T+1 = µT+1 − y2,T .
The information set IT contains variables available at time T that might or might
not be used to construct the original forecasts y1,T and y2,T . For example, if the
previous forecasting errors are used, then IT = {e1,T , e2,T}.

The errors can now be decomposed as

e1,T+1 = b1,T + ξ1,T+1

and
e2,T+1 = b2,T + ξ2,T+1,

where b1,T = E(e1,T+1|IT ), b2,T = E(e2,T+1|IT ) and E(ξ1,T+1|IT ) = E(ξ2,T+1|IT ) =
0. In our example with the previous forecasting errors, b1,T = φ1e1,T and b2,T =
φ2e2,T capture the first-order correlation in the forecasting errors using AR(1)
models, while σ2

ξ1
= var(ξ1,T+1|IT ) and σ2

ξ2
= var(ξ2,T+1|IT ) are the conditional

variances.
Conditional on IT , the error of the combined forecast ec,T+1 = µT+1 − yc,T =

we1,T+1 + (1− w)e2,T+1 will have a nonzero expectation:

E(ec,T+1|IT ) = wb1,T + (1− w)b2,T

and its variance

var(ec,T+1|IT ) = w2σ2
ξ1
+ (1− w)2σ2

ξ2
+ 2w(1− w)ρξ1,ξ2σξ1σξ2 ,

where ρξ1,ξ2 = corr(ξ1,T+1, ξ2,T+1|IT ), and we use the fact that var(b1,T |IT ) =
var(b2,T |IT ) = 0.

In this situation, one should consider minimizing the conditional mean squared
forecasting error (MSFE) to balance both the bias and the variance components:

MSFE(w|IT ) = (wb1,T +(1−w)b2,T )
2+w2σ2

ξ1 +(1−w)2σ2
ξ2 +2w(1−w)ρξ1,ξ2σξ1σξ2

and the optimal solution in this case is

w∗(IT ) =
σ2
ξ2
− ρξ1,ξ2σξ1σξ2 + b22,T − b1,T b2,T

σ2
ξ1
+ b21,T + σ2

ξ2
+ b22,T − 2ρξ1,ξ2σξ1σξ2 − 2b1,T b2,T

. (7)

11



We will refer to w∗(IT ) as the conditionally optimal weight, and IT explicitly indi-
cates the information set used for conditioning.

The conditional weight formula (7) resembles the unconditional formula (2)
but contains new terms: b22,T and −b1,T b2,T in the numerator and b21,T , b

2
2,T and

−2b1,T b2,T in the denominator. The denominator cannot be negative, and the
numerator has two parts. The first classical part σ2

ξ2
− ρξ1,ξ2σξ1σξ2 can become

negative if ρξ1,ξ2 > σξ2/σξ1 . This case is covered in detail in Section 2 and means
that the individual forecasts are highly correlated. The second conditional part
b22,T − b1,T b2,T is negative if b1,T b2,T > b22,T > 0. This happens when the additional
information suggests that b1,T and b2,T are of the same sign, and it is an indication
that both forecasts are expected to over-/underestimate µT+1. In this situation,
w∗(IT ) is more likely to be negative than in the classical framework.

An important message of the conditional analysis is that negative optimal
weights are even more frequent than in the unconditional framework. If the addi-
tional information suggests that the candidate forecasts are conditionally biased in
the same direction, then negative conditional optimal weights can occur even un-
der weak correlation. For example, even when ρξ1,ξ2 = 0, the conditional optimal
weight

w∗(IT ) =
σ2
ξ2
+ b22,T − b1,T b2,T

σ2
ξ1
+ b21,T + σ2

ξ2
+ b22,T − 2b1,T b2,T

can be negative if b1,T b2,T > σ2
ξ2

+ b22,T . This was not possible in the classical
framework with zero correlation.

4 Regression framework

Granger and Ramanathan (1984) showed that the combination weights can also
be estimated via regressions with or without restrictions. Thus, we investigate the
possibility of negative weights in such a regression framework. Their most general
model is a regression without constraints (Method C in their paper). This method
attains the best theoretical minimum sum of squared forecast errors (though the
empirical results in the subsequent literature are mixed), and it is useful for our
demonstration.

The linear regression of the historical individual forecasts y1,t and y2,t on the
known realizations of µt+1 can be formulated as

µt+1 = w0 + w1y1,t + w2y2,t + ec,t+1, (8)

and it may produce negative weights. For example, consider the OLS estimator of
the first coefficient

ŵ1 =

∑
(ydm2,t )

2
∑

ydm1,t µ
dm
t+1 −

∑
ydm1,t y

dm
2,t

∑
ydm2,t µ

dm
t+1∑

(ydm1,t )
2
∑

(ydm2,t )
2 − (

∑
ydm1,t y

dm
2,t )

2
, (9)
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where deviations from the mean ydm1,t = y1,t−ȳ1, y
dm
2,t = y2,t−ȳ2, and µdm

t+1 = µt+1−µ̄
are used for compactness of the formula (with the averages ȳ1, ȳ2, and µ̄ computed
using the historical forecasts and realizations). The denominator and

∑
(ydm2,t )

2

cannot be negative.
∑

ydm1,t µ
dm
t+1 and

∑
ydm2,t µ

dm
t+1 are likely to be positive because

the individual forecasts are constructed or selected to predict the target variable.
If

∑
ydm1,t y

dm
2,t is negative, i.e., the two forecasts are negatively correlated, then ŵ1

cannot be negative. However, if the two forecasts are positively correlated, then
ŵ1 can be negative, and a negative weight is more likely to appear if the forecasts
are highly correlated.

The fact that highly correlated forecasts are responsible for negative weights
is the same as before, but the new angle provides us with additional insights.
If y1,t and y2,t are highly correlated, then regression (8) suffers from imperfect
multicollinearity7, and the estimated coefficients will have a large variance

var(ŵ1) =
1

T

(
1

1− ρ2

)
var(ec)

var(y1)
,

and be highly negatively correlated, corr(ŵ1, ŵ2) = −ρ. The large variance of the
estimated weight when ρ is close to 1 was first discovered by Winkler and Clemen
(1992). The large estimation error in the weights will affect the performance of
the combination. This effect is studied in the next section.

5 Estimated weights and trimming

The previous analysis exposed a rich set of situations in which negative weights are
the optimal choice, at least in theory when all parameters are known. However, the
underlying parameters are typically unknown in practice and need to be estimated,
causing estimation errors in the weights. In this section, we bring the estimation
of the weights explicitly into the analysis, and we examine the effect of trimming,
which is widely used in forecast combinations.

5.1 Forecast combination using estimated weights

To analyse the influence of estimating unknown weights on the properties of combi-
nation, we employ the framework of Claeskens et al. (2016) that allows for random
weights. To make the argument as transparent as possible, we return to the un-
conditional framework covered in Section 2 and assume that the estimation of
the weight is done independently from the individual forecasts (some comments

7Lichtendahl Jr. and Winkler (2020) suggest to exclude one of the forecasts from the combi-
nation due to redundancy.
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about the general case are provided at the end of this subsection). We still linearly
combine two forecasts of an event µ:

yc = ŵy1 + (1− ŵ)y2,

but now ŵ is random because it is estimated from the data. Since the mean
squared forecast error (MSFE) is one of the most common criteria to evaluate
the forecasts, we mainly focus on studying the MSFE of combined forecasts. The
bias-variance tradeoff regarding weight estimation and trimming also applies to
other similar criteria, such as mean absolute forecast error (MAFE).

If ŵ is independent of y1 and y2, then the combination will remain unbiased,
namely, E yc = µ, and the variance is given by

var(yc) = (E ŵ)2σ2
1 + (1− E ŵ)2σ2

2 + 2(E ŵ)(1− E ŵ)ρσ1σ2

+ var(ŵ) var(y1 − y2).

Note that the independence assumption is critical to preserve unbiasedness. For
the variance, the first three terms are similar to the terms in Equation (1) with the
difference being that we now need to use E ŵ, while the last term var(ŵ) var(y1−y2)
is new. This additional term is critical in understanding the effect of the weight
estimation. In the presence of estimation error for the underlying parameters and
weights, this additional variance term is positive and sometimes can be large. A
bias in ŵ does not bias yc, but a positive var(ŵ) always results in an upward shift of
the variance curve and produces a suboptimal combination (in terms of minimum
variance). This situation is demonstrated by Fig. 1 in Claeskens et al. (2016).

In the general framework of Claeskens et al. (2016), when the estimated weights
and forecasts are correlated, the formulae have additional terms, but the main les-
son is the same. Weight estimation brings additional noise that inflates the vari-
ance of the combination; therefore, variance reduction techniques (e.g., trimming)
can be beneficial. In addition, if ŵ is correlated with y1 − y2, the combination
will be biased from the beginning, as demonstrated by Fig. 2 in Claeskens et al.
(2016), so trimming will simply modify the existing bias.

5.2 Effect of trimming

Existing studies involving forecast combinations often restrict weights to be within
the [0,1] interval, which can be done by trimming the negative weights to zero after
estimation (see, e.g., Smith and Wallis, 2009) or using an optimization constraint
(see, e.g., Post et al., 2019). This approach generally results in an upward bias
of the weights while simultaneously reducing their variances. In this section, we
study the simplified setting to isolate the effect of trimming negative weights on
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the combination, i.e., we consider

wTR =

{
ŵ, ŵ ≥ 0
0, ŵ < 0

. (10)

In this setting, trimming is equivalent to imposing a nonnegativity constraint
during the estimation. More general situations are considered in Section 6.

For simplicity, we assume that the initial weight estimator is unbiased, i.e.,
E ŵ = w∗; then, the trimmed weight wTR is upward biased because EwTR >
E ŵ = w∗ but at the same time has a lower variance than the original estimated
weight, i.e., var(wTR) < var(ŵ). Thus, the overall effect of trimming negative
weights on combination is determined by the relative size of the bias and variance
reduction, both caused by trimming. Such a bias-variance tradeoff further depends
on the discrepancy between ŵ and the threshold 0 as well as the variance of the
initial estimated weight.

Figure 4 shows the above argument in graphical terms similar to the figures of
Claeskens et al. (2016). The original weight ŵ allows us to reach the lowest point
R but on a higher curve (due to the variance caused by estimation), while wTR

allows us to reach RTR, which is not the lowest point (due to the bias), but its
curve is lower (due to the variance reduction). As a result, trimming will achieve
better combined forecast performance, i.e., smaller MSFE. The relative position
of the middle curve is controlled by the variance reduction, i.e., the greater the
variance reduction is, the lower the curve. The bias affects the distance between
RTR and the optimal point on the middle curve, i.e., the greater the bias is, the less
optimal the combination. The variance reduction and the bias can be controlled
by using a trimming threshold different from 0.

The effect of trimming is similar to the effect of using equal weights. As anal-
ysed in Elliott (2011) and Claeskens et al. (2016), equal weights do not coincide
with theoretical optimal weights in general, but the main benefit of using the fixed
equal weights is the reduction of the estimation error, i.e., their variance is reduced
to zero. Thus, the overall effect of using equal weights on the MSFE of combi-
nation depends on the difference between the equal and optimal weights as well
as the variance reduction. In situations when the theoretical optimal weight is
negative, the bias of the equal weights could be large, so using fixed weights is not
beneficial. However, using trimming (especially with varying thresholds) allows us
to simultaneously extract the benefits of the variance reduction and to control the
bias.

Jagannathan and Ma (2003) also discuss the role of nonnegativity constraints
from different perspectives in the portfolio allocation setup. They show that the
nonnegativity constraint is equivalent to unconstrained optimization with a shrunk
covariance matrix. This is due to the variance of the element whose nonnegativ-
ity constraint is binding as well as its covariance with other elements that are
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w∗ 0 1EwTR
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R

Figure 4: The effect of trimming when w∗ < 0. The bottom dashed curve rep-
resents the scenario with fixed weights, and two dots correspond to the original
forecasts y1 and y2. The top curve contains R, which represents the combination
with the initial weight ŵ. The middle curve contains RTR, which represents the
combination with the trimmed weight wTR.

reduced. Shrinkage methods are generally beneficial in forecast combinations; see
Roccazzella et al. (2020). Hence, imposing nonnegative constraints can be useful
even when they are not true in the population.

6 Relaxing the nonnegativity constraint

Our previous analysis shows that, on the one hand, there are situations where
negative weights are theoretically optimal. On the other hand, when weights are
estimated, trimming (which does not allow the weights to be negative) can improve
the performance of the combined forecast if the variance reduction by trimming
dominates the bias. This suggests that a better way to balance the trade off
between the bias and variance is to relax the nonnegativity assumption and use
some negative threshold in trimming. The main advantage of using a negative
threshold is to control the degree of bias while still enjoying variance reduction.
We first consider trimming methods for a prespecified trimming threshold (where
we consider two-step and one-step options) and then discuss how to choose the
optimal threshold.
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6.1 Trimming methods for a given threshold

There are two options for forcing the weights to be above a prespecified threshold
−c for some c > 0. First, we can estimate the optimal weights and then trim
those that are below −c. We refer to this option as two-step trimming methods.
Second, we can simultaneously estimate and trim the weights using constrained
optimization. We refer to this option as one-step trimming methods. In this
section, we consider the general case with n weights. We apply one common
threshold across all weights, but there might be situations where one can benefit
from different thresholds for different weights.

6.1.1 Two-step trimming methods

We consider three methods in this class. First, we consider a simple trimming
method that truncates any weight less than −c. In other words, this method
simply replaces zero in (10) with a negative parameter −c for each element ŵi of
the estimated vector of weights ŵ = (ŵ1, ..., ŵn)

′, i.e.,

wTR1
i = α1 ×

{
ŵi, ŵi > −c
−c, ŵi ≤ −c

, (11)

where an additional scaling parameter α1 is required to satisfy the constraint
(wTR1)′ı = 1. The resulting weights are biased but with a lower variance var(wTR1) <
var(ŵ). Thus, they can potentially provide the benefits of trimming while still
maintaining the flexibility of being negative. Note that, in this case, the minimum
weight is −α1c > −c due to rescaling if c > 0. The minimum trimmed weight is
exactly −c only when c = 0.

It is possible to strictly control the minimum weights and guarantee them to
be precisely −c. In the second method, scaling is applied only to the untrimmed
weights, i.e.,

wTR2
i =

{
α2 × ŵi, ŵi > −c

−c, ŵi ≤ −c
, (12)

where the scaling parameter α2 is chosen to satisfy the constraint (wTR2)′ı = 1.
Again, the variance of such trimmed weights will decrease. A disadvantage of the
above methods (11) and (12) is that all weights below the threshold are treated in
the same way. This is not always satisfactory since the magnitude of those weights
provides additional information that can be included during the trimming process.

Thus, motivated, we propose the third trimming method as

wTR3
i =

{
α3 × ŵi, ŵi > −c

−c
min ŵi

× ŵi, ŵi ≤ −c
. (13)
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The scaling of the weights below the threshold sets the smallest weight to be
exactly −c, while all other weights below the threshold are mapped to the (−c, 0)
interval. This version preserves the ratio between the weights, i.e., if ŵi ≤ ŵj ≤ −c,
then ŵi/ŵj = wTR3

i /wTR3
j (and similarly for the weights above the threshold). In

other words, if forecast i had a heavier weight than forecast j before trimming,
it will remain so after trimming. Again, α3 is chosen to satisfy the constraint
(wTR3)′ı = 1.

6.1.2 One-step trimming methods

In contrast to the first class of methods that utilize a given weight ŵ, the sec-
ond class of methods estimates and trims the weights in a single, joint step via
constraint optimization. We consider two methods in this class, differing in their
constraints.

First, we can directly impose the minimum weight restriction on the optimiza-
tion problem for the weight estimation as

wTR4 = argmin
w

w′Σw

w′ı = 1

wi ≥ −c. (14)

Second, we propose to employ an L1-norm constraint in the optimization prob-
lem, drawing insights from Fan et al. (2012). Instead of restricting the minimum
weights using (14), we can restrict the L1-norm of the weights ‖w‖1 =

∑n
i=1 |wi|,

wTR5 = argmin
w

w′Σw

w′ı = 1

‖w‖1 ≤ 1 + c̃. (15)

If c̃ = 0, the resulting weights are nonnegative. If c̃ = +∞, then this constraint
drops out, and the weights have no bounds. For 0 < c̃ < +∞, the weights can be
negative but always bounded. Note that c̃ itself is not the minimum weight that
we are prepared to tolerate, but of course, they are associated with each other.
For example, c̃ = 1 implies that the weights cannot be less than −0.5.

Unlike constraint (14), this L1-norm constraint (15) also imposes an upper
bound on the weight. As shown by Jagannathan and Ma (2003), imposing upper-
bound restrictions in constrained optimization (15) is equivalent to the same un-

constrained optimization but with an inflated covariance matrix, Σ̃, which con-
tains a larger variance and covariance for forecasts whose upper-bound constraint
is binding. Since a large weight is typically assigned to a forecast with low covari-
ances with others, the occurrence of large weights, when the candidate forecasts
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are actually highly correlated, may indicate large estimation errors. In this case,
the adjustment induced by the upper-bound constraints reduces the estimation
error, achieving similar effects as shrinkage, and thus improves the performance of
the combination.

A range of useful properties of optimization problem (15) was explored in Fan
et al. (2012); see their Theorems 1–3, including the effect of using an estimated

covariance matrix Σ̂ instead of the unknown Σ. We complement their investigation
with the study of the asymptotic distribution of the estimated weights.

Let ŵ denote the solution to the sample version of problem (15), in which Σ is

replaced with the sample covariance matrix Σ̂. Given a weight vector w, we write
w−1 = (w2, ..., wn)

′ and similarly define ŵ−1 for the estimated weight and w∗
−1 for

the theoretically optimal solution. Since the weights in ŵ are required to sum to
one, we focus on deriving the asymptotic distribution of ŵ−1.

Theorem 6.1. Suppose that w∗ is the unique solution to the optimization prob-

lem (15) and that regularity assumptions A1–A4 in Appendix A are satisfied. Let

Z ∼ N (0, V ) and Z̃ ∼ N (0, SV S ′), where the positive definite matrices V and S
are defined in Appendix A.

If the L1-norm constraint is not binding, i.e., ‖w∗‖1 < 1 + c̃, then

√
T (ŵ−1 −w∗

−1)
d→ Z.

Alternatively, if the L1-norm constraint is binding and ‖w∗‖1 = 1 + c̃, then

√
T (ŵ−1 −w∗

−1)
d→ S−1ProjCZ̃,

where ProjCZ̃ denotes the projection of Z̃ onto a convex cone C, which is the

tangent cone of the constraint set at the point w∗
−1, defined in Appendix A.

Proof. See Appendix A.

The theorem provides a useful result that can be used, for example, to construct
confidence intervals or to test whether the weights are significantly different from
the equal weights.

6.1.3 Numerical example

To demonstrate the effect of the above five trimming methods, let us consider a nu-
merical example when we have three forecasts with σ2

1 = 1, σ2
2 = 3, σ2

3 = 5, and all
correlations ρij = 0.9. The optimal weight w∗ = (1.6,−0.2,−0.4)′ has two nega-
tive components. If c = 0.1, then wTR1 = (1.14,−0.07,−0.07)′ with the minimum
weight above the trimming threshold, wTR2 = (1.2,−0.1,−0.1)′ with all trimmed
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weights set to the trimming value. The option wTR3 = (1.15,−0.05,−0.1)′ dis-
criminates between the weights below the threshold. The optimization problems
deliver wTR4 = (1.2,−0.1,−0.1)′ and wTR5 = (1.1, 0,−0.1)′ (with c̃ = 1.3226
chosen to match the minimum weights of the previous options). Figure 5 gives a
graphical representation of this numerical example in the trilinear coordinates.

w∗
wTR2

wTR5

wTR1 wTR3

Figure 5: Numerical example in the trilinear coordinates. The solid vertical line
corresponds to the weights with w1 = 0, the solid horizontal line to w2 = 0, and the
solid crossing line to w3 = 0. The dashed lines outline the border of the constraint
weights set with wi > −c. The trimmed versions wTR2, wTR3, and wTR5 of the
original weight w∗ are on the border, and wTR1 is inside.

6.2 Data-driven threshold

The parameter c (or c̃) can be specified by researchers, and then the choice of the
parameters determines the bias-variance tradeoff induced by trimming. A natural
next step is to let the data speak for itself and find a data-driven method to choose
the trimming threshold.

One possibility is to select a threshold based on pseudo out-of-sample MSFE.8

In this case, we divide the available data into two parts, [1, ⌊τT ⌋]−1] and [⌊τT ⌋, T ],
where 0 < τ < 1 and ⌊·⌋ take the closest integer. The first part (⌊τT ⌋−1 periods)
is used to estimate the covariance matrix and the weight vector ŵ, and the second
part (⌊(1 − τ)T ⌋ periods) is used to compute the pseudo out-of-sample MSFE as

MSFE(c, τ) =
1

⌊(1− τ)T ⌋
T−1∑

t=⌊τT ⌋

(y′
tw

TR(c)− µt+1)
2, (16)

8If researchers evaluate the performance of forecasts via the MAFE, they can also select a
threshold based on MAFE with the similar procedure.
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where y′
t = {y1,t, . . . , yn,t}′ is the vector of individual forecasts of µt+1 available at

time t and wTR(c) is the vector of trimmed weights given the threshold parameter
−c using one of the methods from Section 6.1.

To increase the stability and reliability of the MSFE evaluation, we follow Fan
and Yao (2003) and Fan et al. (2012) and consider the average MSFE (AMSFE)
over a series τk as

AMSFE(c) =
1

K

K∑

k=1

MSFE(c, τk), (17)

where K is a prespecified number that increases with T . The optimal threshold is
chosen by minimizing the AMSFE function,

c∗ = argmin
c

AMSFE(c). (18)

Finally, the optimal threshold can be used to construct the combination y′
Tw

TR(c∗)
to forecast µT+1 out of sample.

The estimation of the optimal threshold will of course increase the variance of
the weights (and the combination) relative to the case with the fixed threshold.
Monte Carlo simulations in Section 7 and our empirical example in Section 8
demonstrate that the benefits of relaxing the nonnegativity constraint outweigh
any costs associated with finding the optimal threshold.

7 Monte Carlo illustration

In this section, we demonstrate the effect of trimming via Monte Carlo simulations.
We base our simulation design on Smith and Wallis (2009) with a small modifi-
cation9, so that the optimal theoretical weight can be negative. The modification
allows us to simplify the data generating process. We draw a sequence of T + 1
observations from a strictly stationary AR(1) process

zt = φ1zt−1 + ǫt (t = 1, . . . , T + 1),

where {ǫt} are independent and identically distributed standard-normal variates,
and φ1 is a given parameter subject to the stationarity condition |φ1| < 1. The
variance of the process is given by

σ2
z = var(zt) =

1

1− φ2
1

9The data generating process is simplified from AR(2) to AR(1); the first forecast is the
näıve ‘no-change’ forecast from Case 1, and the second forecast is based on a two-period lag
from Case 2. This modification is sufficient to produce the negative optimal weights, while the
original design of Smith and Wallis (2009) produces only positive theoretical optimal weights
and sometimes negative estimated weights.
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and the first two autocorrelation coefficients are

ρ1 = corr(zt, zt−1) = φ1, ρ2 = corr(zt, zt−2) = φ2
1.

Our aim is to forecast the final observation zT+1. Two forecasts are available:

y1 = zT , y2 = ρ2zT−1,

and we are interested in the properties of various forecast combinations yc =
wy1+(1−w)y2 for different values of φ1. We let T = 30 and use thirty observations
(z1, . . . , zT ) to estimate the weight w.

Since the forecast zT+1 is random rather than fixed, we define e1t = zt − zt−1

and e2t = zt − ρ2zt−2, and consider the forecast errors

e1 = e1,T+1 = zT+1 − y1, e2 = e2,T+1 = zT+1 − y2.

Their variances are

σ2
1 = var(e1) = 2(1− ρ1)σ

2
z , σ2

2 = var(e1) = (1− ρ22)σ
2
z ,

and their correlation is given by ρ = cov(e1, e1)/(σ1σ2), where

cov(e1, e2) = σ2
z(1− ρ2)(1− ρ1 + ρ2).

The optimal weight is negative if ρ > σ2/σ1, which is equivalent to φ1 < 0 in this
case.

Letting ē1 = (1/(T−2))
∑T−1

t=2 e1,t+1 and ē2 = (1/(T−2))
∑T−1

t=2 e2,t+1 we obtain
unbiased estimates of the second-order moments as

(
σ̂2
1 ρ̂σ̂1σ̂2

ρ̂σ̂1σ̂2 σ̂2
2

)
=

1

T − 3

T−1∑

t=2

(
(e1,t+1 − ē1)

2 (e1,t+1 − ē1)(e2,t+1 − ē2)
(e1,t+1 − ē1)(e2,t+1 − ē2) (e2,t+1 − ē2)

2

)
.

Our purpose is to better understand the uncertainty caused by the estimation
of weights and the effect of trimming. We estimate the theoretically optimal weight
w∗ as

ŵ =
σ̂2
2 − ρ̂σ̂1σ̂2

σ̂2
1 + σ̂2

2 − 2ρ̂σ̂1σ̂2
,

but we do not estimate the parameter φ1; it is set to its true value. Any uncertainty
shown in the simulations is therefore caused by weight estimation.

In the case of two forecasts, the different trimming versions introduced in Sec-
tion 6.1 are equivalent, and we can simply consider

wTR(c) = max(ŵ,−c) =

{
ŵ, ŵ > −c,
−c, ŵ ≤ −c

(19)
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Figure 6: Optimal trimming for case φ1 = −0.5. The left subplot shows the
MSFE as a function of the threshold −c, and the vertical line indicates the optimal
threshold −0.26. The right subplot shows the same vertical line, the density of
the estimated ŵ is given by the dashed line, and the solid line shows MSFE as a
function of a fixed weight with point F indicating the theoretically optimal weight
w∗ = −0.29 and two other points indicating the original forecasts.

for a range of different thresholds between −1 and 0.
The experiment is repeated 1,000,000 times, which suffices to control the sim-

ulation error. For a given φ1, each run produces a value of ŵ and wTR, and the
values of the forecast errors e1 = zT+1 − y1, e2 = zT+1 − y2, and ec = zT+1 − yc for
both weights. Finally, we compute the MSFE across all runs.

Figure 6 gives a detailed illustration for the case of φ1 = −0.5. It shows
MSFE as a function of the threshold, the optimal threshold, the theoretically
optimal weight and the density of the estimated weight (Figure C.1 in Appendix
C also shows the variance and the bias components). We can see that the optimal
trimming (−0.26) is very close to the theoretically optimal weight (−0.29), so the
bias in the trimmed estimator is small. The estimated optimal weight has variance
0.0125, which is reduced to 0.0049 in the estimator with the optimal trimming.
This variance reduction is the main explanation for the improved performance. In
contrast, when trimming is done at zero, the variance is reduced to 0.0001, but
the bias is 0.2868 and negates the benefits of the variance reduction.

The proximity of the theoretical optimal weight w∗ and the optimal trimming
threshold reveals another interesting fact: we should trim when ŵ < w∗ < 0, but
not when w∗ < ŵ < 0. This finding is consistent with the optimal trimming of a
normal random variable10 and the following more general proposition.

10If ŵ ∼ N(w∗, σ2
w
), then E(wTR(c)−w∗)2 is minimized for −c = w∗, i.e., it is optimal to trim

only ŵ < w∗.
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Proposition 7.1. Suppose that MSFE(w) = E(yc − zT+1)
2 has a minimum at w∗

and is non-decreasing for w ≥ w∗. The minimum w∗ is estimated with ŵ, such
that E(ŵ) = w∗, and its trimmed version wTR(c) constructed using threshold −c.
Then, function E

[
MSFE

(
wTR(c)

)]
achieves its minimum when −c = w∗.

Proof. See Appendix A.

In empirical studies, neither the optimal weight nor the optimal threshold is
available. However, finding a trimming threshold is arguably an easier task than
estimating w∗ as it does not involve estimation and inversion of the covariance
matrix.

It is useful to compare MSFE of the trimming methods with the performance
of the true optimal weights. The difference between the optimal trimming (−0.26)
and the theoretically optimal weight (−0.29) is 10.3%, but the difference between
the MSFE using the optimal trimming (1.123) and the MSFE using the theoret-
ically optimal weight (1.107) is only 1.4%. This is due to the fact that we are
very close to the minimum, so the first derivative is close to zero, and we only
see second-order effects in the MSFE. Nevertheless, the difference is statistically
significant. The optimal threshold minimizes the gap between MSFEs, but it does
not bridge it.
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Figure 7: For each value of φ1, the solid line shows the MSFE as a function
of the threshold −c, and the point indicates the optimal trimming parameter
that achieves the minimum on this curve. The left panel shows the curves for
φ = −0.9, . . . ,−0.5, while the right panel shows the curves for φ = −0.4, . . . , 0.0.
The results are shown in two panels with different scales to maximize the visibility
and clarity of the results.

Figure 7 shows how the MSFE curve and the optimal trimming change when
different values of φ1 are used. We can see that there are three possible scenarios:
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1. Optimal trimming is zero (φ1 = 0).

2. Optimal trimming is not zero, but trimming at zero is better than no trim-
ming (φ1 = −0.1, φ1 = −0.9).

3. Optimal trimming is not zero, but trimming at zero is worse than no trim-
ming (−0.8 ≤ φ1 ≤ −0.2).

The second scenario is the most common situation in our empirical illustration, i.e.,
trimming at zero is beneficial relative to no trimming, but the optimal trimming
delivers even better performance. Figure C.2 in Appendix C gives the simulation
results for the case of 3 forecasts. Even though the curves are more complicated
and contain multiple local minima, the main conclusion remains the same: we can
improve the forecasting performance by choosing a threshold different from zero.

8 Empirical illustration

We illustrate our theoretical discussions using the European Central Bank (ECB)
Survey of Professional Forecasters (SPF). The SPF provides quarterly forecasts on
inflation (HICP), real GDP growth (RGDP) and the unemployment rate (UNEM)
since 1999. In this paper, we employ the data from Q4 1999 to Q2 2018. We
follow Matsypura et al. (2018) to focus on the one- and two-year-ahead forecast
horizons and evaluate the performance of the combination based on the last 4
years (16 quarters) observations from Q2 2014 with expanding windows. There
are approximately 100 forecasters that participate in the survey, although a num-
ber of forecasters do not respond at every period. Thus, the data constitute an
unbalanced panel. To facilitate the computation of forecast combination and avoid
outliers, we remove forecasters who do not respond for at least 24 quarters (6 years)
following Matsypura et al. (2018). To compare the forecasts with the actual out-
comes, we collect the ECB macroeconomic indices and use the final revision of the
data whenever possible.

Our theoretical analysis in Sections 2–4 suggests that negative weights are more
likely to appear when candidate forecasts are highly correlated or when the fore-
casts simultaneously over-/underestimate the true values. Thus, we first examine,
for each variable, how often the true values fall outside the range of all expert
forecasts. Figure 8 plots the time series of expert forecasts and the true value
for the three variables. Of the three macroeconomic variables, RGDP seems the
most difficult to forecast, with true values lying outside the forecast range in 83%
of the periods for the 1-year-ahead forecast, and 81% for the 2-year-ahead fore-
cast. HICP has the second-highest misforecasting percentage, with 43% and 51%
of true values falling outside the range for the 1-year- and 2-year-ahead forecasts,
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respectively. UNEM has the lowest percentage, while there are still 37% and 43%
of periods when all forecasts are simultaneously over- or underestimated. These
statistics suggest that the forecasts generally exhibit a high degree of similarity,
and it further implies a high correlation between forecasts, leading to a large prob-
ability of the presence of negative weights.11 From a different perspective, since
the true values often lie outside the range of forecasts, a convex combination of
candidate forecasts (using weights between 0 and 1) does not seem appropriate.
In this case, negative weights that concavely combine the candidate forecasts are
expected to produce forecasts close to the true values.

To further understand the behaviour of optimal weights, we examine the em-
pirical distribution of the optimal weights, estimated from

w∗ =
Σ−1ı

ı′Σ−1ı
.

To compute the optimal weights, we first need to estimate the covariance ma-
trix Σ. Since there still exist missing observations after filtering out infrequent
forecasters, we follow Matsypura et al. (2018) to compute the covariance matrix
using the overlapping periods between each pair of forecasters. Specifically, let
Ti ⊆ {1, 2, ..., T} be the set of periods in which a forecast is available for the ith
forecaster. Then, the covariance matrix can be obtained by

σ̂ij =

{
1

|Ti|

∑
t∈Ti

[yit − E(yit)]
2 if i = j

1
|Ti∩Tj |

∑
t∈Ti∩Tj

[yit − E(yit)][yjt −E(yjt)] if i 6= j.

When there is no overlap between two forecasters, we set the covariance to zero.
To guarantee the invertability of the covariance matrix, we employ the nearPD
function from the R package Matrix to obtain the nearest positive definite ma-
trix. When the number of forecasters is larger in the training sample than in the
evaluation sample, we use a part of the covariance matrix that involves only the
forecasters who also respond in the evaluation sample. We report the quantiles
of optimal weights across all forecasters for the entire forecasting period in Ta-
ble 1. In all cases, the minimum estimated optimal weights are far less than zero,
especially for the 2-year-ahead forecast of RGDP, in line with previous findings
that the forecasts of RGDP are often highly correlated. The negativity extends
to the 0.4 quantile for all three variables, indicating a large proportion of negative
weights.

11This is confirmed by Matsypura et al. (2018), who showed that the partial correlations
between forecaster errors are high, especially for 2-year-ahead RGDP forecasts.
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Figure 8: Time-series plots of the forecasts (◦) and true values (—).

8.1 Forecast combination using fixed trimming threshold

Given the high correlation between forecasts, the optimal weights are likely to
be negative. We evaluate the performance of combined forecasts while allowing
for negative weights and those using trimmed weights. The theory in Section 5
shows that trimming negative weights may lead to superior combined forecasts by
decreasing estimation uncertainty. Thus we trim the negative weights using the
five methods described in Section 6. We first range the threshold for trimming
c from −∞ (no trimming) to zero to examine how the performance varies across
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Table 1: Quantiles of estimated optimal weights across all forecasters for the entire
forecasting period

1-year 2-year
Quantile HICP RGDP UNEM HICP RGDP UNEM

0.0 −9.3223 −9.0726 −14.4107 −10.1253 −30.0940 −3.2778
0.1 −0.7105 −0.6153 −0.6554 −0.6201 −0.9821 −0.6978
0.2 −0.3827 −0.2678 −0.3571 −0.3437 −0.5043 −0.3319
0.3 −0.2142 −0.1335 −0.1996 −0.2317 −0.2952 −0.1744
0.4 −0.1108 −0.0326 −0.0970 −0.0889 −0.0983 −0.0632
0.5 −0.0039 0.0355 0.0149 0.0183 0.0683 0.0131
0.6 0.1256 0.1094 0.1163 0.1112 0.2223 0.1402
0.7 0.2563 0.1913 0.2343 0.2401 0.4001 0.2750
0.8 0.4365 0.3096 0.4415 0.4227 0.6264 0.5092
0.9 0.8556 0.6402 0.7600 0.7277 1.0094 0.7625
1.0 11.0675 9.1278 11.2622 7.8712 25.4851 2.7262

different threshold values. Note that the threshold imposed here is fixed and thus
time-invariant. We will discuss the optimal (time-varying) threshold in the next
section.

To evaluate the performance of various weighting schemes, we focus on the
mean squared forecast error (MSFE). The results of using mean absolute forecast
error (MAFE) are qualitatively similar and provided in Appendix B. Table 2 and 3
present the MSFE averaged across the whole testing period (16 quarters). We re-
port the ratio of the MSFE of forecasts using trimmed weights over that using equal
weights, and thus, a value smaller than 1 indicates better performance than the
equal-weight combination. We also test the significance of the difference between
the trimmed-weight and equal-weight combinations using the two-sided modified
Diebold-Mariano (DM) test of Harvey et al. (1997). Several interesting findings
deserve special attention. First, when no trimming is implemented (c = −∞),
the combined forecast using estimated optimal weights performs worse than the
equal-weight combination (except for the case of 1-year ahead RGDP forecast),
confirming the explanation of combination puzzle (Claeskens et al., 2016) that op-
timal weights typically do not outperform equal weights due to large estimation
error. In most cases trimming negative weights to zero (c = 0) leads to better per-
formance to those using equal weights (except for HICP), although the magnitude
of improvement varies across different variables, horizons, and trimming methods.

Second, we find that in many cases, the MSFE first improves and then deteri-
orates when we vary the threshold for trimming from zero to −∞. In particular,
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Table 2: Relative MSFE of combined forecasts using five trimmed weights as a
function of the trimming threshold c (two-step trimming)

1-year forecast horizon 2-year forecast horizon
c HICP RGDP UNEM HICP RGDP UNEM

TR1 −∞ 8.959 0.874 1.065 3.814 5.339 4.625
−5.0 4.175 0.878 0.910 2.320∗ 1.007 4.625
−4.5 4.155 0.877 0.910 2.309∗ 1.015 4.625
−4.0 4.139 0.876 0.910 2.296∗ 1.042 4.625
−3.5 4.129 0.890 0.910 2.285∗ 1.039 4.625
−3.5 4.049 0.904 0.907 2.276∗ 0.954 4.594
−2.5 4.005 0.914 0.903 2.060∗∗ 0.938 4.397
−2.0 3.196 0.870 0.814 1.742∗ 0.973 2.190∗

−1.5 2.197∗ 0.823∗ 0.644 1.552 0.938 1.808
−1.0 1.655∗ 0.821∗∗ 0.555∗∗ 1.416 0.843 1.436
−0.5 1.196 0.852∗∗ 0.594∗∗∗ 1.129 0.900∗ 0.735
0.0 1.021 0.972∗∗∗ 0.914∗∗ 1.026 0.968 0.804∗∗∗

TR2 −∞ 8.959 0.874 1.065 3.814 5.339 4.625
−5.0 6.456∗ 0.901 0.903 2.803∗∗ 1.533 4.625
−4.5 7.364 0.914 0.903 2.729∗∗ 1.399 4.625
−4.0 6.720∗ 0.941 0.904 2.773∗∗ 1.292 4.625
−3.5 7.185 0.937 1.227 2.685∗∗ 1.231 4.625
−3.5 6.795∗ 0.931 2.624 2.595∗∗ 1.257 4.615
−2.5 6.044∗ 0.925 2.571 2.473∗∗ 1.107 4.547
−2.0 5.331∗ 0.911 2.017 2.302∗∗ 0.994 3.727
−1.5 4.275∗ 0.873 1.606 2.124∗∗ 0.891 3.326
−1.0 3.202∗ 0.849 0.852 1.898∗∗ 0.802 2.174
−0.5 2.205∗∗ 0.871 0.547∗∗ 1.431 0.778 1.251
0.0 1.021 0.972∗∗∗ 0.914∗∗ 1.026 0.968 0.804∗∗∗

TR3 −∞ 8.959 0.874 1.065 3.814 5.339 4.625
−5.0 5.681∗ 0.874 0.955 2.803∗∗ 1.002 4.625
−4.5 5.371∗ 0.874 0.950 2.729∗∗ 0.990 4.625
−4.0 5.130∗ 0.872 0.946 2.647∗∗ 0.984 4.625
−3.5 4.890 0.876 0.936 2.581∗∗ 0.977 4.625
−3.5 4.669 0.881 0.921 2.521∗∗ 0.933 4.615
−2.5 4.475 0.887 0.914 2.396∗∗ 0.894 4.547
−2.0 4.018 0.877 0.872 2.168∗∗ 0.878 3.537
−1.5 3.220∗ 0.856 0.708 1.921∗∗ 0.865 2.657∗

−1.0 2.393∗ 0.841 0.568∗ 1.664∗ 0.810 1.921∗

−0.5 1.552 0.850∗ 0.490∗∗∗ 1.317 0.841 0.854
0.0 1.021 0.972∗∗ 0.914∗∗ 1.026 0.968 0.804∗∗∗

Notes: This table presents relative mean squared forecast error (MSFE) of different weight schemes, averaged
across the whole testing period (16 quarters). We normalize all numbers by dividing by the MSFE of the
equal-weight combination, and thus a value smaller than 1 indicates better performance than the equal-weight
combination. ∗∗∗, ∗∗, ∗ indicate that the difference is significant at 1%, 5%, and 10%, respectively, based on
two-sided modified DM tests.
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Table 3: Relative MSFE of combined forecasts using five trimmed weights as a
function of the trimming threshold c (one-step trimming)

1-year forecast horizon 2-year forecast horizon
c HICP RGDP UNEM HICP RGDP UNEM

TR4 −∞ 8.959 0.874 1.065 3.814 5.339 4.625
−5.0 5.719∗∗∗ 0.979∗ 1.701∗ 4.216∗∗ 2.342 7.290∗

−4.5 5.169∗∗ 0.934 4.950∗ 3.944∗∗∗ 1.586 9.406∗∗

−4.0 3.473∗ 1.532 4.011∗ 4.547∗∗ 1.141 8.259∗

−3.5 4.350∗∗ 1.163 4.337∗∗ 3.992∗∗∗ 1.920 7.705∗

−3.5 3.133 1.089 2.140∗∗ 3.605∗∗ 1.234 6.812∗

−2.5 3.503 1.183 1.702∗ 2.345∗∗ 1.338 8.115∗∗

−2.0 3.764∗ 0.979 1.328∗ 2.321 1.445 5.489∗∗

−1.5 2.161 0.957 1.575 2.112∗∗ 1.184 3.339
−1.0 1.810∗ 0.706 0.780 1.947∗∗ 1.030 1.786
−0.5 2.005 0.710∗∗∗ 0.484∗∗ 1.578 0.713 0.906
0.0 0.865∗ 0.893∗∗∗ 0.695∗∗∗ 0.902 0.810∗∗∗ 0.976

TR5 −∞ 8.959 0.874 1.065 3.814 5.339 4.625
−5.0 1.739 0.937 0.549∗∗∗ 1.266∗ 0.568∗∗∗ 1.796
−4.5 1.594 0.751∗∗ 0.567∗∗∗ 1.342 0.546∗∗∗ 1.666
−4.0 1.596 0.776∗ 0.472∗∗∗ 1.237 0.545∗∗∗ 1.455
−3.5 1.544 0.778∗∗ 0.450∗∗∗ 1.201 0.540∗∗∗ 1.321
−3.5 1.430 0.774∗∗ 0.296∗∗∗ 1.112 0.536∗∗∗ 1.101
−2.5 1.238 0.776∗∗ 0.276∗∗∗ 1.032 0.538∗∗∗ 0.926
−2.0 1.134 0.787∗∗ 0.236∗∗∗ 1.024 0.566∗∗∗ 0.748
−1.5 1.027 0.831∗∗ 0.198∗∗∗ 0.993 0.603∗∗∗ 0.589∗

−1.0 0.937 0.872∗∗ 0.199∗∗∗ 0.970 0.654∗∗∗ 0.474∗∗∗

−0.5 0.896 0.888∗∗∗ 0.303∗∗∗ 0.961 0.741∗∗∗ 0.530∗∗∗

0.0 0.866∗ 0.893∗∗∗ 0.695∗∗∗ 0.902 0.810∗∗∗ 0.976

Notes: This table presents relative mean squared forecast error (MSFE) of different weight schemes, averaged
across the whole testing period (16 quarters). We normalize all numbers by dividing by the MSFE of the
equal-weight combination, and thus a value smaller than 1 indicates better performance than the equal-weight
combination. ∗∗∗, ∗∗, ∗ indicate that the difference is significant at 1%, 5%, and 10%, respectively, based on
two-sided modified DM tests.
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the MSFE using trimmed weights decreases when we impose a stiffer trimming
condition (larger thresholds). However, when the threshold is close to zero, fur-
ther increasing the value of the threshold leads to a larger MSFE in many cases
of RGDP and UNEM forecasting. This result implies that there may exist an
optimal trimming threshold that is possibly nonzero (but close to zero), which
we will examine in the next section. A certain fluctuation of performance as c
increases is observed for the one-step trimming methods (TR4 and TR5) when c
is highly negative because the constraints in (14) or (15) are not binding; thus,
the minimum trimmed weights may fluctuate while still satisfying the constraints.
When c is closer to zero, such that constraints are binding, we also find monotonic
behaviour of combination for TR4 and TR5 as c increases.

Third, among the three variables, trimming (around zero) leads to the largest
MSFE reduction with respect to the equal-weight combination for UNEM. For 1-
year-ahead forecasting, the reduction can be more than 40% for two-step trimming
methods and even 80% for TR5, and concerning 2-year-ahead forecasting, the
reduction ranges from approximately 10% to approximately 40%. The largest
MSFE reduction primarily mostly occurs when we set the trimming threshold
c = −0.5 or −1. The good performance of trimmed weights for UNEM suggests
that the error caused by estimating unknown weights is sizeable. With large
estimation errors of optimal weights, trimming is particularly useful because it
reduces such errors and thus improves forecasting efficiency. The large MSFE
reduction for UNEM is also in line with our descriptive analysis above that negative
optimal weights appear less often in UNEM forecasting than in HICP and RGDP,
and they are also of smaller magnitude (less negative). In this case, trimming
around zero does not sacrifice much bias while substantially reducing the variance.

Finally, and importantly, comparing across the five trimming methods, we
find that TR5 has superior performance. For HICP, trimming at zero using TR5
leads to an MSFE ratio smaller than 1 in both the one-year and two-year hori-
zons. In contrast, TR1, TR2, and TR3 all lead to an MSFE ratio larger than 1
when trimming at zero. For RGDP, although all trimming methods produce bet-
ter combinations than equal weighting when the threshold is larger than −2, the
improvement of TR5 is the most sizeable and significant. A similar comparison
applies to UNEM, for which the forecasts with TR5 lead to the best combination
with at most an 80% improvement over the equal-weight combination for the one-
year horizon and 50% for the two-year horizon. Further examination reveals that
TR5 imposes a stronger shrinkage effect on the weights, such that the trimmed
weights are centred around zero. In other words, the minimum (or maximum) of
the resulting weights is typically higher (or lower) than that of other methods, es-
pecially those produced by two-step trimming, and thus, the variance of estimated
weights is smaller. Table B.4 in Appendix B uses Theorem 6.1 to show that the
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proportion of cases where TR5 weights are statistically different from the equal
weights is substantial.

Our final observation is that relatively small values of the trimming threshold
c achieve the improvement. This might be due to a large number of forecasts
present in the SPF. One might expect that the optimal threshold decreases when
the number of forecasters increases.

8.2 Forecast combination using data-driven threshold

The previous section employs a fixed trimming threshold that is invariant over time
and demonstrates that there may exist an “optimal” threshold that minimizes the
MSFE in some cases. In practice, the trimming threshold is, of course, unknown,
so we investigate the performance of data-driven thresholds in this section. We
employ the method described in Section 6.2 to determine the threshold based on
the pseudo out-of-sample AMSFE. We choose the threshold from the range be-
tween 0 to cmin with a step of 0.1 and divide the training sample (Q4 1999 to
Q1 2014) into two subsamples, one for estimating the covariance matrix and the
weight and the other for computing the out-of-sample AMSFE. We consider four
partitions τk ∈ {0.8, 0.85, 0.9, 0.95}. If multiple trimming thresholds lead to the
same AMSFE, we take the largest threshold value among them. Note that this
optimal trimming threshold is time-varying since the training set is expanding and
the optimal weights are estimated at each time when the forecast combination is
made. We consider two choices of cmin, i.e., cmin = {−5,−2}. A smaller value of
cmin allows larger negative weights and simultaneously increases the weight vari-
ance. We will compare how the range of the trimming threshold affects forecasting
performance.12

Table 4 presents the relative MSFE obtained from the trimmed-weight combi-
nation, where the trimming threshold is determined based on the pseudo out-of-
sample AMSFE. Again, all numbers are relative to the MSFE of the equal-weight
combination, and the significance of their difference is tested using the modified
DM test. We highlight the best trimming method in bold for each variable. For
HICP, TR4 and TR5 perform very similarly, and both produce better combinations
than equal weights, but the difference is not statistically significant. For RGDP,
all five methods produce significantly better combinations than the equal-weight
combination, while TR5 leads to the greatest improvement of approximately 11%
for the 1-year forecast and 22% for the 2-year forecast. For UNEM, again, all
methods beat equal-weight combinations. The difference is particularly signifi-
cant and sizeable for 1-year forecast, and TR5 leads to the largest improvement of

12We also consider cmin = −10, and unreported results show that it leads to almost identical
results as cmin = −5.

32



Table 4: Relative MSFE of combined forecasts using trimmed weights with data-
driven threshold based on pseudo out-of-sample evaluation

1-year horizon 2-year horizon
HICP RGDP UNEM HICP RGDP UNEM

cmin = −2
TR1 1.243 0.915∗∗∗ 0.813∗∗∗ 1.037∗ 0.880∗∗∗ 0.832
TR2 1.166 0.934∗∗∗ 0.812∗∗∗ 1.040∗ 0.922∗∗∗ 0.881
TR3 1.161 0.895∗∗∗ 0.761∗∗∗ 1.072∗ 0.901∗∗∗ 0.784∗

TR4 0.865 0.896∗∗∗ 0.700∗∗∗ 0.873 0.810∗∗∗ 0.957
TR5 0.870 0.887∗∗∗ 0.461∗∗∗ 0.907 0.781∗∗∗ 0.866

cmin = −5
TR1 1.243 0.900∗∗∗ 0.823∗∗∗ 1.037∗ 0.876∗∗∗ 0.832
TR2 1.166 0.931∗∗∗ 0.812∗∗∗ 1.040∗ 0.922∗∗∗ 0.881
TR3 1.161 0.912∗∗∗ 0.761∗∗∗ 1.072∗ 0.901∗∗∗ 0.784∗

TR4 0.865 0.893∗∗∗ 0.703∗∗∗ 0.874 0.810∗∗∗ 0.957
TR5 0.865 0.884∗∗∗ 0.457∗∗∗ 0.907 0.781∗∗∗ 0.866

Notes: This table presents relative mean squared forecast error (MSFE) of different weight schemes, averaged
across the whole testing period (16 quarters). We normalize all numbers by dividing by the MSFE of the
equal-weight combination, and thus a value smaller than 1 indicates better performance than the equal-weight
combination. ∗∗∗, ∗∗, ∗ indicate that the difference is significant at 1%, 5%, and 10%, respectively, based on
two-sided modified DM tests. The minimum number in each column is highlighted in bold.

33



approximately 54% in this case, followed by roughly 30% improvement by TR4.
The order of improvement is much larger than the one observed in the previous
studies (see, e.g., Matsypura et al., 2018), therefore, the practical significance of
the results is an important contribution of this paper.

Compared with the best fixed threshold trimming, allowing for dynamic optimal
thresholds does not improve forecasting performance except for 1-year UNEM
forecasting. This is not surprising because estimating the dynamically optimal
threshold introduces extra uncertainty and thus tends to inflate the final MSFE,
especially for those variables that are difficult to forecast, such as HICP and RGDP.
Nevertheless, the best trimming threshold is often unknown in practice, and a poor
choice of the threshold can lead to much worse performance than equal-weight
combination. The data-driven threshold approach performs almost as well as the
ex ante best fixed threshold and robustly outperforms equal weighting. Hence, it
offers a feasible way of estimating the unknown best threshold in practice.

Interestingly, allowing for a large range of searching sets of optimal thresholds
(cmin = −5) sometimes leads to a poorer combination than using a small range
(cmin = −2), e.g., for HICP forecasting. A possible explanation is that the pseudo
out-of-sample evaluation leaves more room for estimation error to play a role.
Typically, allowing for a wide range of searching sets introduces a larger estimation
error. Unreported results (available upon request) show that the time-varying
pattern of the optimal threshold is rather stable and that highly negative weights
only occur at rare time points. Hence, allowing for a large searching set of trimming
thresholds gains limited consistency but introduces more uncertainty.

9 Practical recommendation

We have analysed the negative weights that can emerge when combining fore-
casts and the effects of trimming from a variety of different angles. Our practical
recommendation is to trim negative weights using an optimal trimming threshold
(rather than zero). This strategy allows us to optimally balance the positive effects
of variance reduction and the negative effects of bias. The code for all methods
proposed in this paper is freely available online13.
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Appendix A: Assumptions and proofs

Proof of Proposition 2.2. Let Σ = (σij) be a positive definite matrix of order
n × n. Let Ej be the n × (n − 1) matrix obtained from In by deleting the jth
column. Then Σij = E ′

iΣEj is the (n − 1) × (n − 1) matrix obtained from Σ by
deleting row i and column j. Now define

cij = (−1)i+j|Σij |.

The matrix C = (cij) is called the cofactor matrix and its transpose C ′ is the
adjoint matrix. We have

ΣC ′ = C ′Σ = |Σ|In
and hence

Σ−1 =
1

|Σ|C
′.

We wish to establish necessary and sufficient conditions such that all components
of Σ−1ı are nonnegative, which occurs if and only all components of C ′ı are non-
negative.

The jth column of C is given by

Cej = (−1)j




(−1)1|E ′
1ΣEj |

(−1)2|E ′
2ΣEj |

...
(−1)n|E ′

nΣEj |




and hence the jth component of C ′ı is given by

e′jC
′ı = (−1)j

n∑

i=1

(−1)i|E ′
iΣEj |.

Hence all components of Σ−1ı are nonnegative if and only if

(−1)j
n∑

i=1

(−1)i|E ′
iΣEj | ≥ 0

for all j.

Assumptions for Theorem 6.1. We rewrite the criterion function in optimiza-
tion problem (15) as a function of w−1:

w′Σw = F (w−1),

where w = (w1,w
′
−1)

′ = (1 − ∑n
j=2wj , w2, ..., wn)

′. To derive the asymptotic
distribution of ŵ, we impose the following assumptions:
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A1: {yt}∞t=1 is a stationary ergodic m-dependent sequence;

A2: the moments of y1 exist, and are finite, up to the fourth order;

A3: the gradient vector ∇F (w∗
−1) is zero;

A4: the Hessian matrix ∇2F (w∗
−1) is non-singular.

The first two assumptions are needed to establish asymptotic normality for the
sample covariance matrix. The last two assumptions specify mild regularity con-
ditions needed for the asymptotics of ŵ.

Notation for Theorem 6.1. We write Σ in the block form

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ22 is an (n − 1) × (n − 1) matrix and Σ11 is a scalar. Writing 1 for the
(n− 1)-dimensional vector of ones, we define

Σ̃ = Σ22 + Σ1111
′ − 1Σ12 − Σ211

′

and note that Σ̃ is an (n − 1) × (n − 1) positive semi-definite symmetric matrix.
We show in the proof of Theorem 6.1 that ∇2F (w∗

−1) = Σ̃. We let S = Σ̃1/2

and note that matrix S is positive definite by assumption A4. We define vectors
s = sign(w∗) and z = I(w∗ = 0), where we apply functions sign(·) and I(·)
element by element, and write z = (z1, z

′
−1)

′ and s = (s1, s
′
−1)

′, as before. We
define

C = {Sδ, s.t. δ ∈ R
n−1, δ′s−1 + |δ|′z−1 − 1′δs1 + |1′δ|z1 ≤ 0},

where |δ|′ = (|δ1|, ..., |δn−1|), and note that C is a convex cone in R
n−1.

Let µ = E[y1]. Given a matrix A, we write vec(A) for the vector formed by
stacking together the columns of A. LetW denote the variance for the limiting dis-
tribution of T 1/2[vec(Σ̂)−vec(Σ)]. By Theorem 1 and formula (3.11) in Neudecker
and Wesselman (1990), we have

W = E[(y1 − µ)(y1 − µ)′ ⊗ (y1 − µ)(y1 − µ)′]− vec(Σ)vec(Σ)′, (A.1)

where ⊗ is the Kronecker product. We write I for the (n − 1)× (n − 1) identity
matrix and define C as the following (n− 1)× n2 matrix:

C =
(
w∗

11 −w∗
1I · · · w∗

n1 −w∗
nI
)
.

Finally, we define
V = Σ̃−1CWC ′Σ̃−1,
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which is an (n− 1)× (n− 1) matrix.

Proof of Theorem 6.1. Observe that

F (w−1) =
(
1− 1′w−1 w′

−1

)(Σ11 Σ12

Σ21 Σ22

)(
1− 1′w−1

w−1

)
,

and hence the Hessian matrix of F is given by

∇2F (w−1) = Σ22 + Σ1111
′ − 1Σ12 − Σ211

′ = Σ̃.

We define τ = w − w∗, δ = w−1 − w∗
−1 and δ̂ = ŵ−1 − w∗

−1, to simplify the
exposition. Writing a two-term Taylor expansion for F (w−1) at w

∗
−1, and noting

assumption A3, we derive

F (w−1)− F (w∗
−1) = δ′Σ̃δ. (A.2)

Let Σ̂ denote the sample covariance matrix for y1 and define ∆̂ = Σ̂ − Σ. Note
that

w′∆̂w −w∗′∆̂w∗ =
[
w′∆̂w −w′∆̂w∗

]
+
[
w′∆̂w∗ −w∗′∆̂w∗

]

= w′∆̂τ + τ ′∆̂w∗

= 2τ ′∆̂w∗ + τ ′∆̂τ . (A.3)

We define functions R(w) = w′Σw and R̂(w) = w′Σ̂w. Note that ŵ minimizes

R̂(w) under the constraints in (15). Using formulas (A.2) and (A.3), we derive

R̂(w)− R̂(w∗) =
[
R̂(w)− R(w)

]
+
[
R(w∗)− R̂(w∗)

]
+
[
R(w)− R(w∗)

]

= w′∆̂w −w∗′∆̂w∗ +
[
F (w−1)− F (w∗

−1)
]

= 2τ ′∆̂w∗ + τ ′∆̂τ + δ′Σ̃δ.

Note that τ = (−1′δ, δ)′ and let ZT = T 1/2Σ̃−1(1 − I)∆̂w∗, where vector 1 and

matrix I are defined as before. It follows that τ ′∆̂w∗ = −T−1/2δ′Σ̃ZT . By the
central limit theorem for the sample covariance matrix (Neudecker and Wesselman,

1990, Theorem 1), we have ∆̂ = Op(T
−1/2) and ZT = Op(1). Consequently,

R̂(w)− R̂(w∗) = δ′Σ̃δ − 2T−1/2δ′Σ̃ZT +Op(T
−1/2‖δ‖2). (A.4)

Because R̂(ŵ) ≤ R̂(w∗), we then have

δ̂′Σ̃δ̂ ≤ Op

(
T−1/2[‖δ̂‖+ ‖δ̂‖2]

)
.
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As we mentioned before, Σ̃ is a positive semi-definite matrix. Thus, by for-
mula (A.2) and assumption A4, we have δ̂′Σ̃δ̂ ≥ κ‖δ̂‖2, for some positive con-
stant κ. Consequently,

‖δ̂‖2 = Op

(
T−1/2‖δ̂‖+ T−1/2‖δ̂‖2]

)
,

which implies ‖δ̂‖ = Op(T
−1/2) and establishes the T−1/2 rate of convergence for ŵ.

Let S denote the constraint set for w−1 in problem (15), more specifically,

S = {w−1 ∈ R
n−1, s.t. |1− 1′w−1|+ ‖w−1‖1 ≤ 1 + c̃}. (A.5)

We derive the limiting distribution for T 1/2(ω̂−1−ω∗
−1) by applying Theorem 4.4 in

Geyer (1994). An analysis of the proof of this theorem shows that for its conclusion
to hold, the following conditions are sufficient: (i) ω̂−1 = ω∗

−1 + Op(T
−1/2); (ii)

stochastic bound

T
[
R̂(w∗ + T−1/2vT )− R̂(w∗)

]
= v′

T Σ̃vT − 2v′
T Σ̃ZT + op(1) (A.6)

holds for every Op(1) random vector sequence vT ; (iii) constraint set S is Chernoff
regular at ω∗

−1; and (iv) random sequence Σ̃ZT converges in distribution to a
mean zero Gaussian vctor. We have already established (i). Condition (ii) follows
directly from approximation (A.4). Condition (iii) is only imposed to rule out
pathological cases. It is satisfied in our setting, because S is formed via finitely
many union and intersection operations, applied to a finite collection of closed half-
spaces. By Theorem 1 and formula (3.11) in Neudecker and Wesselman (1990),

T 1/2[vec(Σ̂)− vec(Σ)]
d→ N(0,W ),

which implies that ZT converges in distribution to Z, and hence condition (iv)
holds.

To apply the result in Geyer (1994), we need to define the tangent cone of S at
the point w∗

−1. We denote this tangent cone by C̃. A vector δ lies in C̃ if and only
if there exists a sequence ǫn converging to 0 and a sequence un ∈ S converging
to w∗

−1, such that [un − ω∗
−1]/ǫn → δ. It follows from the definition of S in (A.5)

that
C̃ = {δ ∈ R

n−1, s.t. δ′s−1 + |δ|′z−1 − 1′δs1 + |1′δ|z1 ≤ 0}.
We apply the aforementioned result in Geyer (1994) to conclude that T 1/2(ω̂−1 −
ω∗

−1) converges in distribution to the minimizer of v′Σ̃v − 2v′Σ̃Z over v ∈ C̃.
Note that C = Σ̃1/2C̃. Thus, we can write the solution to the aforementioned
optimization problem as follows:

min
v∈C̃

v′Σ̃v − 2v′Σ̃Z = min
v∈C̃

‖Σ̃1/2v − Σ̃1/2Z‖2 = Σ̃−1/2ProjCΣ̃
1/2Z,
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which establishes the second convergence result in Theorem 6.1. The first conver-
gence result in Theorem 6.1 follows from the observation that C spans the entire
space R

n−1 when w∗
−1 is in the interior of the constraint set S.

Proof of Proposition 7.1. MSFE is a function of the weight w ∈ R that
appears in the combimation yc To simplify the expressions, we write H(c) for
E
[
MSFE

(
wTR(c)

)]
and G(w) for MSFE(w). To complete the proof, we will

demonstrate that H(c) ≥ H(−w∗) for all c.
First, we consider the case −c < w∗ and note that wTR(c) 6= wTR(−w∗) implies
wTR(−w∗) = w∗. Thus, on the event wTR(c) 6= wTR(−w∗) we have

G
(
wTR(c)

)
≥ G

(
w∗

)
= G

(
wTR(−w∗)

)
.

Consequently, G
(
wTR(c)

)
≥ G

(
wTR(−w∗)

)
with probability one, and henceH(c) ≥

H(−w∗).
Finally, we consider the case −c > w∗. We recall that G(w∗) is non-decreasing for
w ≥ w∗, and note that

wTR(c) ≥ wTR(−w∗) ≥ w∗

with probability one. Consequently, we G
(
wTR(c)

)
≥ G

(
wTR(−w∗)

)
, and hence

H(c) ≥ H(−w∗).

Appendix B: Additional empirical results

MAFE results

As shown in Tables B.1–B.3, our conclusion of the empirical analysis in Section 8
remains the same when we evaluate the forecasts using the MAFE. For the fixed
thresholds (see Tables B.1 and B.2), the MAFE in most cases first improves and
then deteriorates when we vary the threshold for trimming from zero to −∞, and
the one-step trimming methods (TR4 and TR5) generally outperform the two-step
trimming (TR1–TR3). For the data-driven thresholds (see Table B.3), TR4 and
TR5 again both produce better combinations than equal weights and two-step
trimming methods.

Statistical difference between TR5 and equal weights

Table B.4 presents the proportion of times when the trimmed weights obtained by
TR5 are significantly different from equal weights at 95% confidence level. More
specifically, we employ the Wald statistic to test for the difference between the
trimmed weights produced by TR5 and equal weights at each evaluation time
point, and take the ratio of the number of times when the test rejects the null
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Table B.1: Relative MAFE of combined forecasts using five trimmed weights as a
function of the trimming threshold c (two-step trimming)

1-year forecast horizon 2-year forecast horizon
c HICP RGDP UNEM HICP RGDP UNEM

TR1 −∞ 2.285 0.886 0.844 1.817 1.386 1.605
−5.0 1.696 0.889 0.794 1.557 0.881 1.605
−4.5 1.680 0.889 0.794 1.553 0.900 1.605
−4.0 1.671 0.888 0.794 1.548 0.926 1.605
−3.5 1.671 0.900 0.794 1.544 0.929 1.605
−3.5 1.643 0.910 0.792 1.540 0.876 1.602
−2.5 1.621 0.915 0.791 1.495 0.834 1.586
−2.0 1.526 0.902 0.786 1.389 0.883 1.304
−1.5 1.371 0.890 0.717 1.303 0.896 1.160
−1.0 1.232 0.896 0.653 1.214 0.874 1.036
−0.5 1.084 0.923 0.697 1.079 0.916 0.754
0.0 1.016 0.987 0.945 1.022 0.976 0.907

TR2 −∞ 2.285 0.886 0.844 1.817 1.386 1.605
−5.0 2.081 0.902 0.790 1.674 1.029 1.605
−4.5 2.152 0.908 0.791 1.660 1.006 1.605
−4.0 2.094 0.920 0.791 1.668 0.988 1.605
−3.5 2.159 0.919 0.881 1.651 0.979 1.605
−3.5 2.106 0.919 1.061 1.632 0.982 1.604
−2.5 2.017 0.917 1.056 1.606 0.936 1.599
−2.0 1.938 0.915 0.991 1.561 0.888 1.528
−1.5 1.779 0.903 0.955 1.502 0.827 1.460
−1.0 1.613 0.895 0.758 1.432 0.758 1.271
−0.5 1.407 0.921 0.631 1.246 0.805 1.035
0.0 1.016 0.987 0.945 1.022 0.976 0.907

TR3 −∞ 2.285 0.886 0.844 1.817 1.386 1.605
−5.0 2.002 0.887 0.811 1.674 0.877 1.605
−4.5 1.961 0.886 0.809 1.660 0.871 1.605
−4.0 1.924 0.886 0.808 1.643 0.867 1.605
−3.5 1.878 0.889 0.804 1.629 0.862 1.605
−3.5 1.830 0.893 0.798 1.615 0.839 1.604
−2.5 1.781 0.899 0.796 1.588 0.811 1.599
−2.0 1.706 0.898 0.791 1.526 0.795 1.499
−1.5 1.594 0.896 0.744 1.447 0.789 1.387
−1.0 1.439 0.898 0.671 1.334 0.813 1.232
−0.5 1.206 0.917 0.605 1.177 0.858 0.866
0.0 1.016 0.987 0.945 1.022 0.976 0.907

Notes: This table presents relative mean absolute forecast error (MAFE) of different weight schemes, averaged
across the whole testing period (16 quarters). We normalize all numbers by dividing by the MAFE of the
equal-weight combination, and thus a value smaller than 1 indicates better performance than the equal-weight
combination.

42



Table B.2: Relative MAFE of combined forecasts using five trimmed weights as a
function of the trimming threshold c (one-step trimming)

1-year forecast horizon 2-year forecast horizon
c HICP RGDP UNEM HICP RGDP UNEM

TR4 −∞ 2.285 0.886 0.844 1.817 1.386 1.605
−5.0 2.374 1.210 1.762 1.731 1.588 2.652
−4.5 2.326 1.296 1.458 2.146 1.016 2.624
−4.0 2.084 0.860 1.121 1.594 1.039 2.307
−3.5 2.017 1.113 1.816 1.568 1.097 2.235
−3.5 2.366 0.965 1.612 1.595 0.978 1.820
−2.5 1.321 1.025 1.198 1.624 1.115 1.947
−2.0 1.435 0.953 1.154 1.484 0.888 1.952
−1.5 1.299 0.799 0.761 1.305 0.891 1.636
−1.0 1.454 0.745 0.846 1.459 0.836 1.178
−0.5 1.282 0.783 0.570 1.331 0.769 0.875
0.0 0.940 0.939 0.815 0.955 0.882 0.964

TR5 −∞ 2.285 0.886 0.844 1.817 1.386 1.605
−5.0 1.244 0.874 0.798 1.279 0.710 1.186
−4.5 1.176 0.914 0.662 1.163 0.710 1.164
−4.0 1.198 0.847 0.597 1.101 0.709 1.049
−3.5 1.165 0.864 0.524 1.084 0.705 0.975
−3.5 1.105 0.898 0.490 1.071 0.699 0.879
−2.5 1.055 0.890 0.445 1.037 0.702 0.826
−2.0 1.014 0.899 0.422 1.045 0.724 0.736
−1.5 0.968 0.925 0.402 1.019 0.735 0.632
−1.0 0.951 0.946 0.390 0.985 0.765 0.572
−0.5 0.958 0.947 0.485 0.979 0.828 0.673
0.0 0.940 0.939 0.815 0.955 0.882 0.963

Notes: This table presents relative mean absolute forecast error (MAFE) of different weight schemes, averaged
across the whole testing period (16 quarters). We normalize all numbers by dividing by the MAFE of the
equal-weight combination, and thus a value smaller than 1 indicates better performance than the equal-weight
combination.
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Table B.3: Relative MAFE of combined forecasts using trimmed weights with
data-driven threshold based on pseudo out-of-sample evaluation

1-year horizon 2-year horizon
HICP RGDP UNEM HICP RGDP UNEM

cmin = −2
TR1 1.079 0.945 0.880 1.062 0.890 0.910
TR2 1.070 0.948 0.868 1.056 0.902 0.934
TR3 1.078 0.947 0.852 1.083 0.897 0.870

TR4 0.940 0.941 0.816 0.925 0.882 0.958
TR5 0.944 0.938 0.663 0.947 0.857 0.913

cmin = −5
TR1 1.079 0.946 0.884 1.062 0.886 0.910
TR2 1.070 0.948 0.868 1.056 0.902 0.934
TR3 1.078 0.947 0.852 1.083 0.897 0.870

TR4 0.940 0.941 0.816 0.934 0.882 0.958
TR5 0.943 0.939 0.663 0.947 0.857 0.913

Notes: This table presents relative mean absolute forecast error (MAFE) of different weight schemes, averaged
across the whole testing period (16 quarters). We normalize all numbers by dividing by the MAFE of the
equal-weight combination, and thus a value smaller than 1 indicates better performance than the equal-weight
combination.
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hypothesis over the total number of evaluation periods. We report this proportion
for a grid of fixed thresholds (upper panel of the table) and for a data-driven
threshold (lower panel). We find that there are generally a larger proportion of
times when the difference between two weights is significant if we use a highly
negative threshold. Interestingly, for both fixed and data-driven thresholds, the
trimmed weights more frequently differ from equal weights for UNEM forecasting
than for HICP. This result is in line with a large improvement of TR5 forecast
combination over the equal-weight combination, as shown in Tables 3 and 4 in the
paper.

Table B.4: Proportion of times when the trimmed weights by TR5 are significantly
different from equal weights at 95% confidence level

1-year forecast horizon 2-year forecast horizon
c HICP RGDP UNEM HICP RGDP UNEM

Fixed threshold
−5.0 0.19 0.38 0.44 0.44 0.44 0.31
−4.5 0.25 0.38 0.38 0.44 0.44 0.31
−4.0 0.19 0.38 0.38 0.44 0.50 0.38
−3.5 0.25 0.31 0.31 0.44 0.50 0.31
−3.5 0.19 0.31 0.31 0.38 0.44 0.38
−2.5 0.19 0.31 0.31 0.44 0.44 0.31
−2.0 0.25 0.31 0.31 0.38 0.31 0.31
−1.5 0.19 0.25 0.31 0.38 0.31 0.31
−1.0 0.13 0.31 0.31 0.38 0.31 0.31
−0.5 0.13 0.25 0.31 0.31 0.31 0.31
0.0 0.13 0.06 0.31 0.31 0.31 0.38

Data-driven threshold
0.13 0.06 0.31 0.31 0.38 0.38

Notes: This table presents the proportion of times over the entire evaluation periods, at which the Wald statistics
for testing the difference between trimmed weights using TR5 and equal weights are significantly different at 95%
confidence level.
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Appendix C: Additional simulation results

To investigate the trade-off between variance and bias, we consider those compo-
nents in our simulation example (detailed in Figure 6). For the case of φ1 = −0.5,
we decompose MSE = E(wTR −w∗)2 into the variance (which becomes smaller as
we trim closer to zero) and the bias (which increases and reaches its maximum
at zero), see Figure C.1. The decomposition reveals that the bias component is
driving the sharp increase in MSE when the threshold is approaching zero. The
shape of the MSE curve resembles the shape of the MSFE curve in Figure 6. This
finding further strengthens our conclusions: the common practice of trimming at
zero can be improved dramatically as even small deviations from zero will produce
a sharp decrease in the bias. This is clearly visible in our empirical example as
well.
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Figure C.1: The tradeoff between the bias and the variance in the case of φ1 =
−0.5. The decreasing dashed curve shows the variance of wTR, the increasing
dashed curve shows the squared bias of wTR, and the solid curve shows the MSE
as a function of the threshold −c. The optimal threshold that minimizes MSE (as
well as MSFE) is given by the vertical line.

We performed additional simulations for the case of 3 forecasts. The set up is
the same as in Section 7, y1 = zT , y2 = ρ2zT−1, with the additional third forecast
being y3 = zT−2. We only investigate TR5 version as it shows the best results
in our empirical study. Since TR5 involves constraint optimization, it is more
time-intensive. As a result, we decrease the number of simulation to be 10,000.
Figure C.2 presents the results.

The MSFE curves have more complicated shapes than in the cases of two
forecasts (see Figure 7). The left local minimum is due to the trimming of the first
negative forecast. As we go from left to right, the MSFE curve decreases due to
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Figure C.2: The case of 3 forecasts and TR5 trimming. For each value of φ1, the
solid line shows the MSFE as a function of the threshold−c, and the point indicates
the optimal trimming parameter that achieves the minimum on this curve. The
left panel shows the curves for φ = −0.9, . . . ,−0.5, while the right panel shows the
curves for φ = −0.4, . . . , 0.0. The results are shown in two panels with different
scales to maximize visibility and clarity of the results.

variance stabilization and sharply increases once we pass the first minimum due to
the bias component that gives a heavy penalty once we go over the theoretically
optimal value of the negative weight. The second local minimum is when we
reach the second negative weight. Again, we see an initial dip due to the variance
stabilization followed by the increase due to the increasing bias once we pass the
optimal point. We still arrive at the same conclusion: the forecasting performance
can be improved by choosing a threshold different from zero.
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