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This online supplement contains two parts: the first part is Appendices which provide

the proofs of Theorems 1 and 2; and the second part consists of four sections with ad-

ditional theoretical and simulation results. Section S.1 provides further explanations on

the conditions for the theorems. Section S.2 provides the detailed proof of Theorem 1.

Section S.3 presents additional simulation studies, including the comparison with linear

model averaging, data generation process with a diverging number of candidate models,

and the case with autoregressive errors. Section S.4 presents additional figures and tables

for the empirical application.

Part 1: Appendices

A.1 Proof of Theorem 1

For convenience purposes, similar to the proof in Zhang et al. (2013), we treat X and Z as

non-random throughout the Appendix. Allowing for randomness would not invalidate the

proof, because all our technical conditions hold almost surely.

Denote the largest singular value of a matrix A by λmax(A). From the first part of

Condition 2, we have

λmax(Ω) = O(1). (A.1)
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The proof of (2.6) is similar to that of Theorem 1’ in Wan et al. (2010). Following their

steps and using (A.1), transformation ǫ
∗ = Ω−1/2

ǫ, and Condition 2, the only argument

that we need to verify to complete the proof is that

max
s

{λmax(Ps)} = O(1) and max
s

{λmax(P(s)P
T
(s))} = O(1). (A.2)

Therefore, in this Appendix, we only focus on the proof of (A.2), but we provide a detailed

proof of Theorem 1 in Section S.2 of this supplement.

By an inequality of Reisz (see Hardy et al. (1952) or Speckman (1988)), we know that

λ2
max(K(s)) ≤ max

i

∑n

j=1
|K(s),ij|max

j

∑n

i=1
|K(s),ij|. (A.3)

In addition, it is well known that for any two n× n matrices B1 and B2 (see, for example,

Li (1987))

λmax(B1B2) ≤ λmax(B1)λmax(B2) and λmax(B1 +B2) ≤ λmax(B1) + λmax(B2). (A.4)

From (A.4) and λmax(P̃(s)) = 1, we obtain that for 1 ≤ s ≤ Sn

λmax(P(s)P
T
(s)) ≤ λ2

max(P(s))

= λ2
max{P̃(s)(In −K(s)) +K(s)}

≤ [λmax(P̃(s)){1 + λmax(K(s))}+ λmax(K(s))]
2

= [{1 + λmax(K(s))}+ λmax(K(s))]
2, (A.5)

which, together with (A.3) and Condition 1, implies (A.2). This completes the proof.

A.2 Proof of Theorem 2

Note that

Ĉn(w) = Cn(w) + trace{P(w)Ω̂(s∗)} − trace{P(w)Ω}.

Hence, from the proof of Theorem 1, in order to prove (2.6), we only need to verify that

sup
w∈W

[|trace{P(w)Ω̂(s∗)} − trace{P(w)Ω}|/Rn(w)] = op(1). (A.6)

Let Q(s) = diag(ρ
(s)
11 , . . . , ρ

(s)
nn) and Q(w) =

∑Sn

s=1wsQ(s). Then, from (2.7), we have

sup
w∈W

[|trace{P(w)Ω̂(s∗)} − trace{P(w)Ω}|/Rn(w)]
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= sup
w∈W

[|(y −P(s∗)y)
TQ(w)(y −P(s∗)y)− trace{Q(w)Ω}|/Rn(w)]

= sup
w∈W

[|(ǫ+ µ−P(s∗)µ−P(s∗)ǫ)
TQ(w)(ǫ+ µ−P(s∗)µ−P(s∗)ǫ)

−trace{Q(w)Ω}|/Rn(w)]

≤ sup
w∈W

[|ǫT(In −P(s∗))
TQ(w)(In −P(s∗))ǫ

−trace{(In −P(s∗))
TQ(w)(In −P(s∗))Ω}|/Rn(w)]

+2 sup
w∈W

[|ǫT(In −P(s∗))
TQ(w)(In −P(s∗))µ|/Rn(w)]

+ sup
w∈W

[|µT(In −P(s∗))
TQ(w)(In −P(s∗))µ|/Rn(w)]

+ sup
w∈W

[|trace(PT
(s∗)Q(w)P(s∗)Ω)|/Rn(w)]

+2 sup
w∈W

[|trace(PT
(s∗)Q(w)Ω)|/Rn(w)]

≡ Ξ1 + Ξ2 + Ξ3 + Ξ4 + Ξ5. (A.7)

Define ρ = max
s

max
i

|ρ
(s)
ii |. From (A.3), (A.4), and Conditions 4-5, we have

ρ ≤ cn−1max
s

{|trace(P(s))|}

≤ cn−1max
s

{|trace(P̃(s))− trace(P̃(s)K(s))|}+ cn−1max
s

|trace(K(s))|

≤ cn−1max
s

|trace(P̃(s))|+ cn−1max
s

|trace(P̃(s)K(s))|+ cn−1max
s

|trace(K(s))|

= cn−1p̃+ cn−12−1max
s

|trace(P̃(s)K(s) +KT
(s)P̃(s))|+ cn−1max

s
|trace(K(s))|

≤ cn−1p̃+ cn−12−1max
s

{λmax(P̃(s)K(s) +KT
(s)P̃(s))rank(P̃(s)K(s) +KT

(s)P̃(s))}

+cn−1max
s

|trace(K(s))|

≤ cn−1p̃+ cn−12max
s

{psλmax(P̃(s))λmax(K(s))}+ cn−1max
s

|trace(K(s))|

= O(n−1p̃+ n−1h−1). (A.8)

It follows from (2.3) and Condition 2 that

ξn → ∞, Snξ
−2G
n = o(1), and ξ−2

n ‖P(s∗)µ− µ‖2 = o(1). (A.9)

Using (A.1), (A.2), (A.8), Chebyshev’s inequality, and Theorem 2 of Whittle (1960),

we can obtain that, for any δ > 0,

Pr(Ξ1 > δ) ≤
∑Sn

s=1
Pr[|ǫT(In −P(s∗))

TQ(s)(In −P(s∗))ǫ

−trace{(In −P(s∗))
TQ(s)(In −P(s∗))Ω}| > δξn]
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≤ δ−2Gξ−2G
n

∑Sn

s=1
E[ǫT(In −P(s∗))

TQ(s)(In −P(s∗))ǫ

−trace{(In −P(s∗))
TQ(s)(In −P(s∗))Ω}]2G

≤ c1δ
−2Gξ−2G

n

∑Sn

s=1
traceG{Ω1/2(In −P(s∗))

TQ(s)(In −P(s∗))Ω

×(In −P(s∗))
TQ(s)(In −P(s∗))Ω

1/2}

≤ c1δ
−2Gξ−2G

n λ4G
max(In −P(s∗))λ

2G
max(Ω)nGρ2GSn

= ξ−2G
n Sn{O(n−1p̃2 + n−1h−2)}G, (A.10)

where c1 is a positive constant and G is the integer defined in Condition 2. It follows

from (A.9)–(A.10) and Condition 6 that Ξ1 = op(1).

Using (A.1), (A.2), (A.4), (A.8) and (A.9), we have

Ξ2 ≤ 2ξ−1
n ‖(In −P(s∗))µ‖ sup

w∈W

‖Q(w)(In −P(s∗))ǫ‖

≤ 2ξ−1
n ‖(In −P(s∗))µ‖ sup

w∈W

{ρ‖(In −P(s∗))ǫ‖

≤ 2ξ−1
n ‖(In −P(s∗))µ‖ρ{1 + λmax(P(s∗))}‖ǫ‖

= o(1)Op(n
−1/2p̃ + n−1/2h−1), (A.11)

which, along with Condition 6, implies that Ξ2 = op(1).

Using (A.2), (A.4), (A.8), (A.9) and Condition 3, we have

Ξ3 ≤ ξ−1
n ρ‖(In −P(s∗))µ‖

2

≤ ξ−1
n ‖(In −P(s∗))µ‖ρ‖µ‖{1 + λmax(P(s∗))}

= o(1)O(n−1/2p̃+ n−1/2h−1), (A.12)

which, along with Condition 6, implies that Ξ3 = o(1).

Using (A.1), (A.2) and (A.4), we have

Ξ4 + Ξ5 ≤ 2ξ−1
n rank(P(s∗)) sup

w∈W

[λmax{P
T
(s∗)Q(w)P(s∗)Ω}]

+4ξ−1
n rank(P(s∗)) sup

w∈W

[λmax{P
T
(s∗)Q(w)Ω}]

≤ 2ξ−1
n p̃ρλ2

max(P(s∗))λmax(Ω) + 4ξ−1
n p̃ρλmax(P(s∗))λmax(Ω)

= ξ−1
n O(n−1p̃2 + n−1h−1p̃), (A.13)

which, along with (A.9) and Condition 6, implies that Ξ4 + Ξ5 = o(1). Therefore, we can

get (A.6). This completes the proof.
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Part 2: Additional theoretical and simulation results

S.1 Further discussions on conditions

Following Appendix A of Speckman (1988), we first provide justifications of Conditions

4 and 1. We consider a simple case with Z(s),i being a scalar Z(s),i. Then, K(s),ii =

khs
(0)/

∑n
j∗=1 khs

(Z(s),i − Z(s),j∗), by which, we obtain

K(s),ii = O(n−1h−1
s ), (S.1)

following the assumption (g) of Speckman (1988), which we quote below

“There is a probability density p(z) of Z(s),i on [0,1] such that n−1
∑n

i=1 c(Z(s),i) →
∫ 1

0
c(z)p(z)dz

as n → ∞ for any continuous function c(z).”

Condition 4 directly follows from (S.1). If K(s),ij is non-negative, then the row sums of

K(s) are identically unity. Hence, the first bound of Condition 1 is trivial. Assumption (g)

of Speckman (1988) implies that the column sums can be approximated by integrals and

the dependence on hs can be regarded to vanish as n → ∞. Therefore, the second bound

of Condition 1 is also reasonable.

Now we examine Condition 2. The first part of Condition 2 is a moment condition. To

explain the second part of Condition 2, we define ̺n = max1≤s≤S Rn(w
o
s). The second part

of Condition 2 is implied by S2
nξ

−2G
n ̺Gn → 0, and it depends on the infimum risk of model

averaging estimators (i.e., ξn) and the maximum risk of model selection estimators (i.e.,

̺n). Both ξn and ̺n depend on the magnitude of model misspecification, which is difficult

to quantify in practice.

Finally, we discuss Condition 5. As explained in Hansen & Racine (2012), this assump-

tion excludes only extremely unbalanced designs, for example, where a single observation

remains relevant asymptotically. Therefore, Condition 5 is also a reasonable assumption.

S.2 Detailed proof of Theorem 1

Let A(w) = In −P(w). Note that

Cn(w) = Ln(w) + ‖ǫ‖2 + 2ǫTA(w)µ+ 2
[
trace{P(w)Ω} − ǫ

TP(w)ǫ
]
.
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Similar to the proof of Theorem 2.1 of Li (1987), Theorem 1 is valid if the following

equations hold:

sup
w∈W

[|ǫTA(w)µ|/Rn(w)] = op(1), (S.2)

sup
w∈W

[|trace{P(w)Ω} − ǫ
TP(w)ǫ|/Rn(w)] = op(1), (S.3)

and

sup
w∈W

[|Ln(w)|/Rn(w)− 1|] = op(1). (S.4)

Therefore, the main task of the proof is to verify (S.2)–(S.4).

First, from (2.3) and Condition 2, we can obtain (S.2) using exactly the same proving

steps as those in (A.1) of Wan et al. (2010). Second, to verify (S.3), we let ǫ∗ = Ω−1/2
ǫ.

From (2.3), (A.1) and Theorem 2 of Whittle (1960), we have that for any δ > 0,

Pr

{
sup
w∈W

[|trace{P(w)Ω} − ǫ
TP(w)ǫ|/Rn(w)] > δ

}

= Pr

{
sup
w∈W

[|trace{P(w)Ω} − ǫ
∗TΩ1/2P(w)Ω1/2

ǫ
∗|/Rn(w)] > δ

}

≤
∑Sn

s=1
Pr

{
|trace{P(wo

s)Ω} − ǫ
∗TΩ1/2P(wo

s)Ω
1/2

ǫ
∗| > δξn

}

≤
∑Sn

s=1
E
{
[trace{P(wo

s)Ω} − ǫ
∗TΩ1/2P(wo

s)Ω
1/2

ǫ
∗]2Gδ−2Gξ−2G

n

}

≤ Cδ−2Gξ−2G
n

∑Sn

s=1
traceG{Ω1/2P(wo

s)ΩP(wo
s)

TΩ1/2}

≤ Cδ−2Gξ−2G
n λG

max(Ω)
∑Sn

s=1
traceG{Ω1/2P(wo

s)P(wo
s)

TΩ1/2}

≤ Cδ−2Gξ−2G
n λG

max(Ω)
∑Sn

s=1
RG

n (w
o
s), (S.5)

where C is a positive constant. Combining (S.5) and Condition 2, we can obtain (S.3).

Finally, we prove (S.4). For this purpose, we first note that Equation (2.3) implies that

Ln(w)− Rn(w)

= ‖P(w)y− µ‖2 − ‖P(w)µ− µ‖2 − trace{P(w)ΩPT(w)}

= ‖P(w)ǫ‖2 − trace{P(w)ΩPT(w)} − 2ǫTP(w)TA(w)µ. (S.6)

Hence, (S.4) holds if we can verify that

sup
w∈W

[|ǫTP(w)TA(w)µ|/Rn(w)] = op(1), (S.7)
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and

sup
w∈W

[|‖P(w)ǫ‖2 − trace{P(w)ΩPT(w)}|/Rn(w)] = op(1). (S.8)

From (A.2), we know that for w∗ ∈ W and w ∈ W, we have that

‖P(w∗)TA(w)µ‖2 ≤ λmax

{
P(w∗)P(w∗)T

}
‖A(w)µ‖2

≤ λ2
max {P(w∗)} ‖A(w)µ‖2

= O(1)‖A(w)µ‖2, (S.9)

and

trace
{
P(w)P(w∗)TP(w∗)PT(w)

}
≤ λmax

{
P(w∗)TP(w∗)

}
trace

{
P(w)PT(w)

}

≤ λ2
max {P(w∗)} trace

{
P(w)PT(w)

}

= O(1)trace
{
P(w)PT(w)

}
. (S.10)

Now with Condition 2, (2.3), (S.9), and (S.10) readily there, we can follow exactly the

same steps as those in (A.4) and (A.5) of Wan et al. (2010) to obtain (S.7) and (S.8). This

completes the proof.

S.3 Additional simulation studies

S.3.1 Comparison with linear model averaging

To see how much harm it can cause by ignoring the nonlinearity, we first compare our

method with linear model averaging (LMA) that considers all candidate models to be fully

linear. Theoretically, LMA should work better if the model is linear or the degree of nonlin-

earity is small since nonparametric estimation converges much slower and is generally less

efficient than least squares. As the degree of nonlinearity increases, better fit of nonpara-

metric estimation dominates its efficiency loss and slow convergence, and thus MAPLM

should outperform LMA. To confirm this theoretical argument, we make the comparison

between MAPLM and LMA in three data generation processes with different nonlinear

functions, i.e.

DGP1: g1(zi1, zi2) = 2(zi1 − 0.5)3 + sin(zi2),

DGP2: g2(zi1, zi2) = exp(zi1) + z2i2,

DGP3: g3(zi1, zi2) = exp(zi1) ∗ z
2
i2.
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The degree of nonlinearity of the three functions is shown in Figure S.1. Clearly, g3
generates the most nonlinear relationship. g2 is slightly more nonlinear than g1, both of

which are closer to linearity than g3. Hence, we expect that the performance of MAPLM

and LMA is comparable under g1 and g2, but MAPLM should demonstrate more superiority

under g3. Also, because of the above-mentioned tradeoff between better fit and efficiency,

the relative performance of MAPLM and LMA depends on the signal-to-noise ratio, the

sample size, and the degree of uncertainty in model specification. We shall examine the

effect of these factors in turn.

Figure S.1: Nonlinear functions in three data generation processes
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We first consider the case where there is uncertainty only in the linear component, and

the results are given in Figures S.2. First, we see that MAPLM generally demonstrates its

superiority over LMA when R2 and sample size are moderate or large, except in DGP1 with

small degree of nonlinearity. As theR2 and sample size decrease, LMA performs better than

MAPLM. This is not surprising because nonparametric estimation tends to fit the noise

more than least squares when R2 is small, and it suffers from the curse of dimensionality

when the sample size is small. Next, we examine how the degree of nonlinearity influence

the performance. As expected, the advantage of MAPLM becomes more prominent as the

degree of nonlinearity increases. In particular, LMA slightly outperforms MAPLM in most

of cases of DGP1 where nonlinearity is weak, but their discrepancy is small. As the degree

of nonlinearity increases in DGP2, MAPLM outperforms LMA when R2 ≥ 0.5. With a

large sample size n = 400, MAPLM beats LMA even when R2 = 0.3. In DGP3 with the

largest degree of nonlinearity, MAPLM outperforms LMA for a even wider range of R2.

It starts to dominate LMA under R2 = 0.3 even when n = 200, and the disadvantage of

LMA under large R2 is magnified.

We then consider the second case where there is uncertainty in both linear and nonlinear

components (structure uncertainty), and the results are presented in Figures S.3. In this
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case, MAPLM shows a dominant superiority over LMA over the whole range of R2 in all

DGPs and all sample sizes.

In general, we observe a tradeoff between better fit and efficiency in choosing be-

tween MAPLM and LMA. MAPLM containing a nonparametric component can better

capture the nonlinear pattern, but converges slower and is less efficient than least squares.

Therefore, when the degree of nonlinearity is large, better fit of nonparametric estima-

tion dominates its efficiency loss and slow convergence, and this results in better perfor-

mance of MAPLM than LMA. A large signal-to-noise ratio and a large sample size also

favour MAPLM as both of these two situations help improve efficiency. Moreover, we find

MAPLM more robust than LMA. Under weak nonlinearity when LMA works especially

well, MAPLM is only slightly inferior to LMA. However, LMA can perform much worse

than MAPLM and other methods in some situations.
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Figure S.2: Mean square error comparison: Uncertainty only in the linear component
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Figure S.3: Mean square error comparison: Uncertainty in both components
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S.3.2 Simulation results of additional data generation processes

First, to examine whether the simulation results are affected by expanding model space,

we consider additional experiment designs. In particular, in the first case with uncertainty

only in the linear component, we let the number of candidate models increase from 7

(= 23 − 1) to 31 (= 25 − 1), and further to 127 (= 27 − 1) as the sample size increases

from 50, 100, to 200. In the second case with uncertainty both in the linear and nonlinear

component, we let the number of candidate models vary from 12 to 50, and further to 133

as the sample size increases. In both cases, we generate the nonlinear component using

the function g(z) = exp(z) + z2. The results are presented in Figure S.4. We see that the

results are highly robust. With diverging number of candidate models, the superiority of

MAPLM over linear model averging is even more obvious, which suggests that MAPLM is

particularly useful when the model space is large.

Second, to mimic possible serial correlation in the empirical data, we consider data

generation process with autoregressive errors. In particular, we generate the error as

ǫi = σ(0.75ǫi−1 + ui), where ui follows a normal distribution with zero mean and variance

0.75, and σ controls the signal-to-noise ratio. The results are provided in Figure S.5, and

the relative performance of competitive methods is hardly affected.
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Figure S.4: Mean square error comparison: Diverging number of candidate models
(g(z1, z2) = exp(z1) + z22)
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Figure S.5: Mean square error comparison: AR errors in Case 1
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S.4 Additional figures and tables for the empirical ap-

plication

Figure S.6: Features of the change in Japan’s CDS spreads
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Table S.1: Descriptive statistics of the first-differenced data (before normalization)

Mean Variance 5% quantile 95% quantile

CDS spreads −0.0001 14.3059 −4.9634 4.9031

Domestic stock return 0.0076 3.0897 −2.2639 2.3691

Domestic stock volatility 0.0002 0.4833 −0.2516 0.3563

Foreign exchange rate −0.0128 0.1910 −0.6240 0.5940

Global stock return −0.0028 3.5461 −2.9118 3.0539

US treasury yield −0.0032 0.0022 −0.0900 0.0700

Global default risk premium −0.0006 0.0031 −0.0890 0.0701
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Figure S.7: Nonparametric estimation for each macroeconomic determinant
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