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1 Introduction

Poisson regressions have become a standard tool to model count dependent variables, and are widely

used in many economic and financial studies. For example, researchers and decision makers exhibit

a keen interest in understanding what affects innovation outcomes and how to predict the outcomes,

because innovation is often regarded as a driving force of countries’ or firms’ long-run growth and

performance (Aghion and Howitt, 1992; Kogan et al., 2017; Hochberg et al., 2018). This interest

has yielded a vast body of literature investigating the determinants of innovation from various per-

spectives, e.g., incentives (Coles et al., 2006), managerial personality (Sunder et al., 2017), and firm

characteristics (Fang et al., 2014). Since the most popular measure of innovation outcome is the

number of patents or citations, both of which are count variables, Poisson regressions are widely

employed to explain and predict the innovation outcomes.

As in many regression analyses, it is often uncertain which covariates should be included in

Poisson regression models. In the innovation example, there are typically a large number of covari-

ates that are potentially related with innovation outcomes, but such relations are not always clear

and often depend on the research questions and datasets used. A large set of potential covariates in-

troduces great model uncertainty, and thus it is a vital question of how to address model uncertainty

in Poisson regressions.

This paper proposes a new method to address model uncertainty in Poisson regressions. We

employ a model averaging (MA) technique that combines the estimates from multiple models with

certain weights. To choose appropriate weights, we employ a Kullback-Leibler (KL)-based criterion

that is an unbiased estimator of the KL divergence. When all candidate models are misspecified, we

show that minimizing this criterion leads to asymptotically optimal weights that achieve the mini-

mum KL-type divergence as the infeasible best possible model averaging estimator. Such asymptotic

optimality provides theoretical ground for our model averaging prediction. Moreover, when the set

of candidate models happens to include correct models, we show that our model averaging estimates

of slope coefficients are consistent. Importantly, in both cases, we allow the number of covariates to

increase as the sample size increases, and thus, the dimension and the number of candidate models

also diverge. Hence, our approach is particularly useful in the applications where more covariates
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can be included in the model as new observations become available and are added to the sample.

Model averaging offers an attractive method to address model uncertainty. The conventional

solution to model uncertainty is to select the “best” model based on some data-driven criteria, e.g.,

information criteria, and the estimators obtained from the selected model are called pretest estima-

tors. Such estimators clearly separate selection and estimation in two steps and thus suffer from

unbounded risk (Magnus, 2002). Moreover, the standard inference of these estimators ignores the

uncertainty emerging from the selection step (Danilov and Magnus, 2004), although some recent

advances may allow us to capture additional sampling variability introduced by the selection step

(Berk et al., 2013; Charkhi and Claeskens, 2018). Model averaging (MA) addresses model uncer-

tainty from a different perspective. Rather than relying on a single best model, MA accounts for

all candidate models and averages their estimates with weights that can reflect model performance.

Thus, it is an integrated procedure where both model and estimation uncertainty are taken into ac-

count. Unlike the pretest estimates, model averaging estimates are continuous and unconditional

and have substantially less risk (Hansen, 2014).

There are two streams of model averaging approaches: one from the Bayesian perspective and

the other on the frequentist basis. Bayesian model averaging is flexible and works for a wide range of

models (see Hoeting et al., 1999, for a comprehensive review), but the choice of appropriate priors

is often not clear and experiential. Frequentist model averaging (FMA) methods can be further

divided into two categories, differing in the purpose of combination. The first category combines

for adaption (see Yang, 2001; Yuan and Yang, 2005; Wei and Yang, 2012, among others). More

specifically, the purpose of combination for these methods is to approach the performance of the

best single model, and thus, the theoretical justification primarily focuses on the risk property of the

averaging estimate. The second category of FMA methods combines estimates for the purpose of

outperforming any single model, and therefore, they are sometimes referred to as combination for

improvement or optimal model averaging. Steel (2020) provided an overview of these two types of

model averaging methods and their recent economic applications. For these methods, the optimality

of weight choices is often of particular interest. Our approach falls into the second category and

is intended to outperform any single model via combination. It is relevant in practice since most

(single) empirical models are misspecified.
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We contribute to the model averaging literature in terms of two main aspects. First, we propose

an unbiased criterion to choose averaging weights for Poisson regressions, which allows for a di-

vergent number of covariates. Existing optimal model averaging methods primarily focus on linear

models; examples include Mallows model averaging (Hansen, 2007), jackknife model averaging

(Hansen and Racine, 2012), heteroskedasticity robust Cp (Liu and Okui, 2013), quantile regres-

sion averaging (Lu and Su, 2015), prediction model averaging (Xie, 2015), predictive regression

averaging (Liu and Kuo, 2016), and functional data model averaging (Zhang et al., 2018). These

techniques cannot be directly applied to Poisson regressions because the model is estimated using

the maximum likelihood based on a Poisson distribution function, and the asymptotic optimality

of above averaging methods (for linear models) no longer holds. Moreover, these existing studies

assume that the dimension of each candidate model is fixed, which could be a restrictive assumption

when more variables become available as the sample size increases. We extend optimal model av-

eraging to Poisson regression, a form of generalized linear models (GLMs), and allow the number

of candidate models and the dimension of each candidate model to diverge as the sample size in-

creases. Since the KL divergence is a common measure of model performance for generalized linear

models (Zhang et al., 2016; Ando and Li, 2017), we employ perturbation techniques and develop an

unbiased criterion based on the KL divergence to determine the weights and show their asymptotic

optimality.

Recently, Zhang et al. (2016) and Ando and Li (2017) studied optimal model averaging for

GLMs. Zhang et al. (2016) proposed a weight choice criterion based on a penalized (negative)

likelihood function. This criterion is, however, a biased approximation of KL divergence since it

is equivalent to the KL divergence plus a penalty term. Ando and Li (2017) proposed to determine

the weights by minimizing leave-one-out cross-validation. Although asymptotic optimality of the

resulting weights has been established for both methods, neither of the the criteria are unbiased for

the KL divergence, and thus, the choice of weights does not directly minimize the KL divergence.

We differ from these two studies by focusing on a specific GLM, i.e., Poisson regression. This

setup allows us to develop a weight choice criterion that is a precisely unbiased estimator of the KL

divergence. Related studies also include De Luca et al. (2018) and Charkhi et al. (2016). De Luca

et al. (2018) proposed a weighted average least squares (WALS) procedure for GLMs, which is

a combination of frequentist and Bayesian approaches and thus does not consider the asymptotic
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properties of the weight choice. Its finite-sample sampling properties have been further studied in

De Luca et al. (2020). Charkhi et al. (2016) considered frequentist model averaging for general

likelihood models but employed a local misspecification framework that is not assumed in our case.

These two averaging estimators mainly concern the bias-variance trade-off in parameter estimation

(Hjort and Claeskens, 2003). In contrast, our averaging method targets the asymptotic optimality of

prediction when all candidate models are misspecified as well as the consistency of parameters when

at least one candidate models is correctly specified. Another important difference from these extant

studies on GLM averaging is that we allow the number and the dimension of candidate models to

diverge. Specifically, De Luca et al. (2018); Charkhi et al. (2016); Zhang et al. (2016) assumed that

the number of covariates and/or the number of candidate models is finite. While Ando and Li (2017)

allowed potentially high-dimensional covariates, they first sort and group the covariates based on

their bivariate relevance with the outcome variable, and then only average candidate models that

contain finite and the most relevant groups of covariates (discarding the less relevant ones). In

contrast, our averaging scheme explicitly allows both the dimension of each candidate model and

the number of candidate models to diverge.

Our second theoretical contribution is to study the asymptotic property of averaging estimates of

slope coefficients in Poisson regressions when the candidate models include correct models. Zhang

et al. (2020) showed the consistency of averaging coefficient estimates when at least one correct

model exists in the candidate model set, but they only concern linear models. We extend this ar-

gument to Poisson regressions. This extension is technically challenging since our estimation is

achieved by maximizing the likelihood function and the coefficient estimates do not have analytical

solutions. We overcome these challenges by employing a very different technique from Zhang et al.

(2020) that relies on the consistency of weights to prove the coefficient consistency. This result com-

plements the asymptotic optimality when all candidate models are misspecified, and demonstrates

the validity of our method in the situation with correct models existing in the model space. To the

best of our knowledge, no consistency results have been established for GLM model averaging, and

the current paper provides the first study regarding Poisson model averaging.

A simulation study containing various designs of experiments confirms our theoretical results

and demonstrates the advantages of the proposed method over several popular model selection and
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averaging methods. We apply the method to study the innovation outcome measured by the num-

ber of patents using the U.S. corporate data. Given a large number of potential determinants of

innovation, there is great model uncertainty in the Poisson regression of the number of patents on

innovation determinants. We show that our KL-based model averaging performs well in predicting

corporate innovation outcomes. We also examine the possible determinants of innovation outcome,

particularly focusing on the role of CEOs holding a pilot licence (Sunder et al., 2017). Our full

model estimation using all covariates confirms the significance of pilot CEO coefficient reported by

Sunder et al. (2017). However, when we take into account model uncertainty, the model averaging

estimate of pilot CEO effect is less salient. Further examination reveals that pilot CEO is strongly

correlated with some of other managerial characteristics, such as her wealth and technical educa-

tion background, which seem redundant in explaining innovation outcomes. This result suggests a

large degree of model uncertainty in the innovation regression, such that the strong and significant

association between pilot CEOs and innovation outcomes reported by Sunder et al. (2017) should

be interpreted with great caution.

The remainder of the paper is organized as follows. Section 2 sets up the model and presents

the model averaging method. Section 3 establishes asymptotic results when all candidate models

are misspecified and when correct models are included in the model space. Section 4 evaluates the

finite sample performance of the proposed method and compares it with model selection and other

averaging methods. Section 5 applies the proposed method to revisit the relation between corporate

innovation outcome and managerial risk-taking preference. Section 6 concludes. Finally, technical

proofs are provided in the Supplementary Material.

2 Model setup and estimation

This section first presents the setup of our model and then proposes a new model averaging method

to estimate this model.
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2.1 Averaging estimates in Poisson regression

Suppose we observe a dataset {(yi,xi), i = 1, . . . , n}, where yi is the realization of a count variable

Yi measuring the number of occurrences of an event in a given interval for the ith individual, xi is

a p-dimensional vector, and n denotes the number of observations. We allow xi to be divergent-

dimensional in the sense that p may increase as n → ∞, but p < n. Our interest is to explain yi

with the potential determinants in xi and to predict yi. For these purposes, a Poisson distribution is

commonly used, which associates the probability of Yi events with xi as follows:

Pr(Yi = yi|µi) =
exp(−µi)µyii

yi!
, (1)

where µi is the Poisson incidence rate that depends on xi as µi = exp(xT
i β) and β is the associated

p× 1 coefficient vector.

In practice, not all covariates are “useful” in predicting yi, and researchers are typically uncertain

regarding which should be included in the model ex ante. Hence, a number of candidate models with

different specifications of xi are considered. Let S be the number of candidate models. Typically,

with p covariates in xi, we have S = 2p − 1 models. However, when p is great, we may consider a

model screening step prior to model averaging, resulting in S < 2p− 1. Let Πs be a p× ps selection

matrix that consists of 0’s and 1’s and selects ps covariates (ps ≤ p) for the sth model. Denote the

ps-dimensional covariate vector in the sth model by xT
(s),i = xT

i Πs. We model the Poisson incidence

rate of this candidate model as

µ(s),i = exp(xT
(s),iβ

∗
(s)), (2)

where β∗(s) is the quasi-true parameter (White, 1982) that minimizes the KL divergence between the

density (1) and the density of the sth model. We estimate β∗(s) via the maximum likelihood (ML)

method and denote the resulting estimate as β̂(s). Note that since p is allowed to increase with the

sample size n, the dimension of each submodel, ps for s = 1, 2, . . . , S, also diverges when n→∞,

leading to an increasing-dimensional parameter estimation problem for all candidate models as well

as a diverging number of candidate models. Thus, our setup is in sharp contrast to conventional

averaging techniques for GLMs that restrict the dimension and/or the number of candidate models

to be finite (Zhang et al., 2016; Charkhi et al., 2016; Ando and Li, 2017; De Luca et al., 2018).
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To account for model uncertainty and avoid the problems caused by pretesting (Magnus, 2002),

we propose to average the estimates obtained from each candidate model. First, we need to unify

the dimension of the coefficient estimates of each candidate model by β̂s = Πsβ̂(s). Then, we can

compute the model averaging estimates of coefficient β by

β̂(w) =
S∑
s=1

wsβ̂s, (3)

where w = (w1, w2, ..., wS)T is the weight vector belonging to the set Wn = {w ∈ [0, 1]S :∑S
s=1ws = 1}. The model averaging problem that we considered here differs from the literature in

that we consider generalized linear models with a divergent dimension as the sample size increases.

2.2 Weight choice criterion

The model averaging estimates in (3) depends on the choice of weights, and this section provides

a feasible and data-driven weight choice. Since each candidate model is estimated via maximum

likelihood with a Poisson distribution function, it is natural to consider a KL-type criterion, which

measures the divergence between the fitted and true density functions.

Let y = (y1, y2, . . . , yn)T and µ = (µ1, µ2, . . . , µn)T. The averaging estimator of µi can be

obtained by

µ̂i(w,y) = exp
{
xT
i β̂(w)

}
. (4)

We stack µ̂i(w,y) in a vector and denote µ̂(w,y) = (µ̂1(w,y), µ̂2(w,y), ..., µ̂n(w,y))T. The KL

loss function for two independent sets of realizations, y and y∗, is defined as

KL(w) = Ef(y∗) log [f(y∗)/g {y∗|µ̂(w,y)}]

= Ef(y∗) log f(y∗)− Ef(y∗) log g {y∗|µ̂(w,y)}

=
n∑
i=1

[µi log(µi)− µi − µi log{µ̂i(w,y)}+ µ̂i(w,y)] , (5)

where f(y∗) is the density of y∗, g {y∗|µ̂(w,y)} is the conditional density of y∗ given the fitted

model using observations y, and the expectationEf(y∗) is taken over y∗. We suggest a weight choice

criterion by estimating the KL-type risk function Ef(y) [KL(w)] using perturbation techniques.
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Define y(yi−1) = (y1, . . . , yi−1, yi − 1, yi+1, . . . , yn)T, which replaces the ith element of y by

yi − 1. The model averaging estimate of the Poisson incidence rate using the data y(yi−1) is then

given by

µ̂(w,y(yi−1)) =
(
µ̂1(w,y

(yi−1)), µ̂2(w,y
(yi−1)), ..., µ̂n(w,y(yi−1))

)T
.

With the approximated incidence rate readily there, we can estimate the KL-type risk function

Ef(y) [KL(w)] by

C(w) = log f(y) +
n∑
i=1

[
µ̂i(w,y) + log(yi!)− yi log{µ̂i(w,y(yi−1))}

]
. (6)

Note that when yi = 0, yi log{µ̂i(w,y(yi−1))} = 0. By the Stein-Chen lemma (Chen, 1975; Chen

et al., 2010), we have the following lemma.

Lemma 1 If y is generated from a Poisson regression as in (1), we have that

Ef(y) [C(w)] = Ef(y) [KL(w)] . (7)

Proof. See Appendix A.1.

This lemma states that our weight-choice criteria C(w) is an unbiased estimator of the KL-type

risk Ef(y) [KL(w)] as long as the underlying distribution of dependent variable is Poisson, and thus

minimizing C(w) is asymptotically equivalent to minimizing the KL-type risk. The unbiasedness

property provides the first justification of the validity of our criterion (see Hansen, 2007, for a similar

argument for the Mallows criterion in linear regressions).

Removing terms in C(w) that do not depend on w, we obtain the following feasible criterion:

C∗(w) = − log g{y|µ̂(w,y)}+
n∑
i=1

[
yi log {µ̂i(w,y)} − yi log

{
µ̂i(w,y

(yi−1))
}]
. (8)

Thus, we can choose weights by minimizing C∗(w), i.e.,

ŵ = arg min
w∈Wn

C∗(w). (9)

Note that our criterion (8) is not a special case of the weight choice criterion for GLM given by (3)

of Zhang et al. (2016) since the second term of C∗(w) depends on the weights nonlinearly, while

the penalty term in criterion (3) of Zhang et al. (2016) is a linear function of the weights. With the

estimated weights available, we can obtain the averaging estimates of the coefficient and Poisson

incidence rate by β̂(ŵ) and µ̂i(ŵ,y) = exp{xT
i β̂(ŵ)}, respectively.
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3 Asymptotic properties

Next, we examine the asymptotic properties of the proposed averaging estimates. We consider two

situations: (1) all candidate models are misspecified and (2) the set of candidate models includes the

correct (but not necessarily the true) models. We show that if all candidate models are misspecified,

our weight choice is asymptotically optimal in the sense that it yields a KL loss that is asymptotically

identical to that resulted from the infeasible best possible MA estimator. In the second situation

with correct models included in the set of candidate models, we establish the consistency of MA

estimators of slope coefficients.

3.1 Asymptotic optimality

Some regularity conditions are needed to show the asymptotic optimality of the weights.

Condition 1 For any s ∈ {1, . . . , S}, the maximum likelihood estimator β̂(s) exists, and the follow-

ing equation about β ⊂ Rps has a solution:
n∑
i=1

{
exp(xT

(s),iβ)− µi
}
x(s),i = 0. (10)

This condition guarantees the existence of maximum likelihood estimate β̂(s). It is a high level

condition but can be satisfied under some weak assumptions according to Shao (2003). The solution

of (10) is the quasi-true parameter β∗(s) since it minimizes the KL divergence between the density

(1) and the density of the sth model. The uniqueness of the solution will be discussed by Lemma 3

in Appendix A.1.

Condition 2 There exist positive constants C1 and C2 such that

0 < C1 <
‖µ‖2

n
< C2 <∞. (11)

Condition 2 restricts the variability of the Poisson incidence rate, and inequality (11) here is the

same as Condition (8) of Ando and Li (2014) and Condition (A4) of Ando and Li (2017). Moreover,

if yi is generated from a Poisson distribution, considering that n−1
∑n

i=1 Var(yi) = n−1
∑n

i=1 µi ≤√
‖µ‖2/n, (11) also imposes a restriction on the upper bound of the variation of yi.
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Condition 3 There exist positive constants C3, C4, C5 and ρ such that

max
1≤s≤S

max
1≤i≤n

‖xs,i‖√
ps
≤ C3 <∞, (12)

max
1≤s≤S

sup
β(s)∈O(β∗

(s)
,ρ)

1

n

n∑
i=1

exp(xT
(s),iβ(s)) ≤ C4 <∞, (13)

max
1≤s≤S

‖β∗(s)‖√
ps
≤ C5 <∞, (14)

where O(β∗(s), ρ) is a neighborhood of β∗(s), i.e., {β(s) ∈ Rps : ‖β(s) − β∗(s)‖ ≤ ρ}.

Condition 4 Let λmin(·) and λmax(·) be the minimum and maximum eigenvalues, respectively, and

define

I(s)(β(s)) =
1

n

n∑
i=1

exp
(
xT
(s),iβ(s)

)
x(s),ix

T
(s),i.

There exists a ρ > 0 and two positive constants Cmin and Cmax such that

min
1≤s≤S

inf
β(s)∈O(β∗

(s)
,ρ)
λmin

{
I(s)(β(s))

}
≥ Cmin > 0 (15)

and

max
1≤s≤S

sup
β(s)∈O(β∗

(s)
,ρ)

λmax

{
I(s)(β(s))

}
≤ Cmax <∞, (16)

where O(β∗(s), ρ) is a neighborhood of β∗(s), i.e., {β(s) ∈ Rps : ‖β(s) − β∗(s)‖ ≤ ρ}.

Conditions 3 and 4 restrict the variability of covariates and coefficients. The assumption stated in

(12) resembles Assumption (A2) of Liang and Du (2012). When ρ = 0, (13) implies that

max
1≤s≤S

n−1
n∑
i=1

exp(xT
(s),iβ

∗
(s)) = max

1≤s≤S
n−1

n∑
i=1

µ(s),i ≤ C4,

which reasonably controls µ(s). Combining (13) and (16) can lead to Condition (C.4) of Zhang

et al. (2016). Condition 4 is commonly imposed to show the convergence of β̂(s) and resembles

Assumption (A2) of Liang and Du (2012), Conditions 1-2 in Lv and Liu (2014, Theorem 6) and

Condition (C.4) of Zhang et al. (2016). When ρ = 0, the inequality (16) implies that

max
1≤s≤S

λmax

(
n−1

n∑
i=1

µ(s),ix(s),ix
T
(s),i

)
≤
(

max
s,i

µ(s),i

)
λmax

(
n−1

n∑
i=1

xix
T
i

)
,
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where the left-hand side of the inequality is bounded when sups,i µ(s),i and λmax

(
n−1

∑n
i=1 xix

T
i

)
are both bounded. The latter one is an assumption widely used in the literature. See, for example,

Assumption (A2) of Liang and Du (2012).

Define the KL divergence based on quasi-true coefficients as

KL∗(w) =
n∑
i=1

{−µi + µi log(µi)}+
n∑
i=1

[µ∗i (w)− µi log{µ∗i (w)}] , (17)

where µ∗i (w) = exp(
∑S

s=1wsx
T
(s),iβ

∗
(s)) and β∗(s) is the quasi-true parameter defined in (2).

Condition 5 As n→∞, Sp/n→ 0 and Sp2n/ξ2n → 0, where ξn = infw∈Wn KL∗(w).

Condition 5 concerns how close the candidate models can be to the true model. It requires that

infw∈Wn KL∗(w) grow at a rate no slower than S1/2pn1/2 while allowing p to increase with n at

certain rate. This requirement implies that the candidate models cannot be too close to the true

model, and it obviously rules out the scenario where the true model is included in the set of candidate

models (Flynn et al., 2013). This assumption is similar to Condition (8) of Ando and Li (2014) and

Condition (A3) of Ando and Li (2017).

With these conditions, we can establish the asymptotic optimality of the weights in terms of

minimizing the KL loss in the following theorem.

Theorem 1 Under Conditions 1–5,

KL(ŵ)

infw∈Wn KL(w)
→ 1 (18)

in probability as n→∞.

Proof. See Appendix A.2.

This theorem shows that the model averaging estimate of Poisson incidence rate using weights de-

rived from (9) is asymptotically optimal in the sense that its KL divergence is asymptotically iden-

tical to that obtained from the infeasible best possible model averaging estimator. The above holds

even when the functional form of µi is unknown, as in most applications. This fact implies that any

misspecification of µi is allowed, including unrestricted form of omitted variables as well as a devi-

ation between the true underlying distribution and the Poisson model. Note that our misspecification
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framework differs from the widely adopted local misspecification framework (Hjort and Claeskens,

2003), which restricts the order of omitted variable bias to decay as n increases.

3.2 Consistency of averaging coefficient estimates

In some applications, the set of candidate models may include the correct model but not necessarily

the true model. In this case, we can establish the consistency of our averaging estimates. To this

end, we first distinguish between the true and correct models. Let βtrue = (βtrue,1, βtrue,2, ..., βtrue,p)
T

be the true parameters of model (1) and denote the set of the indices of nonzero true coefficients as

T = {j : βtrue,j 6= 0}. The cardinality of T , ptrue, is allowed to diverge. The true model contains the

covariates whose indices are in T and does not contain any other covariates, and thus, it is unique.

Nevertheless, there may be multiple correct models, and they all nest the true model. More formally,

letMs be the set of indices of elements in x(s),i for s = 1, . . . , S. IfMs ⊇ T , the sth candidate

model is called the correct model. In contrast, ifMs + T , the sth model is called a misspecified

model.

Condition 6 There exist two positive constants c0 and C6 such that

λmin

(
1

n

n∑
i=1

xix
T
i

)
≥ c0 > 0, (19)

max

{
max
1≤i≤n

max
1≤s≤S

|xT
i β
∗
s|, max

1≤i≤n
|xT
i βtrue|

}
≤ C6 <∞. (20)

Condition 7 As n→∞, pS1/2n−1/2 → 0.

Conditions 6-7 are used to guarantee the consistency of β̂(ŵ). Inequality (19) is similar to As-

sumption (A2) of Liang and Du (2012). Considering µ(s),i = exp(xT
i β
∗
s) and µi = exp(xT

i βtrue),

inequality (20) essentially guarantees that the expectations of the sth candidate model and the true

model are bounded. Condition 7 imposes a restriction on the order among p, S and n. Compared

with Sp/n→ 0 in Condition 5, Condition 7 needs the sample size n to be of a larger order.
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Theorem 2 Under Conditions 1–4 and 6-7, if correct models are included in the set of candidate

models, then √
n

p

∥∥∥β̂(ŵ)− βtrue

∥∥∥ = OP (1). (21)

Proof. See Appendix A.3.

This theorem shows that if one or multiple correct models are included in the model space, our

model averaging method can produce a consistent estimator for β, namely β̂(ŵ). This consistency

result further implies that the prediction based on our KL-MA estimator is expected to perform not

much worse than that of the correct model, if not better. Theorems 1 and 2 jointly suggest that

our method can provide good prediction regardless of whether the model space contains correct

models. The consistency of model averaging estimates has been studied by Zhang (2015), but only

for linear regressions with finite dimension. Here, we consider a generalized linear model and allow

for divergent dimension.

3.3 Model averaging with (ultra-)high dimensional models

So far, we have allowed a divergent dimension of covariates, but we still require that the dimension

do not exceed the sample size. In some applications, the number of covariates could be sizeable or

even exceed the sample size, such that estimating and averaging over all possible candidate models

is (computationally) infeasible. In these cases, we can first order the covariates based on their

marginal correlations with the dependent variable, and construct the candidate models by including

one extra covariate at each time based on the ordering. The idea of model screening based on

bivariate correlation is in a similar spirit of the “sure independence screening” proposed by Fan

and Lv (2008) and Fan and Song (2010). Alternatively, we can divide the covariates in several

groups based on the magnitude of their marginal correlations with the dependent variable, and then

build one candidate model for each group but discard the group with correlations close to 0, which is

similar to Ando and Li (2014, 2017). Both approaches are essentially pre-screening model averaging

procedures, which first rule out poor candidate models and only average a subset of models with a

good model fit.
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To justify the pre-screening model averaging in our framework, we first show the asymptotic

optimality of the resulting estimates. Let D be a (random) subset of {1, . . . , S} and Ws
n = {w ∈

[0, 1]S :
∑

s∈D ws = 1 and
∑

s/∈D ws = 0} be a subset ofWn. Note thatWs
n is also random due to the

randomness of D. The pre-screening model-averaging estimator based on the subset D is obtained

by using the weight vector ŵs = arg minw∈Ws
n
C∗(w). We make an additional assumption:

Condition 8 There exist a non-negative sequence of νn and a weight sequence of wn ∈ Wn such

that ξ−1n νn → 0, infw∈Wn C∗(w) = C∗(wn)− νn, and Pr(wn ∈ Ws
n)→ 1 as n→∞.

This condition requires that there exists a weight sequence {wn} that achieves the minimum of

the averaging criterion infw∈Wn C∗(w) relative to the minimum KL loss ξn = infw∈Wn KL∗(w),

i.e., {infw∈Wn C∗(w) − C∗(wn)}/ξn → 0, and this sequence is also contained in the set of post-

screening weights, Ws
n, with probability approaching one. Intuitively, this condition ensures that

there still exists a good weight sequence after screening, such that the asymptotic optimality is valid

over the entire model space composed of all candidate models. Under Conditions 1–8, we can use

the same arguments as Theorem 3 of Zhang et al. (2016) to show that the pre-screening model

averaging estimator based on the candidate model set Ws
n still achieves the asymptotic optimality,

namely

KL(ŵs)

infw∈Ws
n

KL(w)
→ 1.

Moreover, the consistency result in Theorem 2 also allows for a pre-screening procedure as long

as the pre-screened model space contains a correct model. Considering the fact that the sure inde-

pendence screening guarantees the true model to lie in the set of screened model space in generalized

linear regressions shown by Fan and Song (2010), the pre-screening model averaging estimator is

expected to be consistent when correct models exist in the set of candidate models, although extra

uncertainty may arise and inference would be more complicated due to pre-screening.

4 Monte Carlo simulation

In this section, we evaluate the finite sample performance of the proposed model averaging estima-

tors via simulation. We consider two simulation designs, one with a finite dimension of covariates
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and the other with a divergent dimension. In each design, we consider two subcases that differ in

terms of whether correct models are included as candidate models.

4.1 Simulation designs

Design 1

Our first design considers finite-dimensional covariates. We generate yi from Poisson(µi) as

µi = exp(β0 + xT
i β + ziθ), (22)

where xi is a 6 × 1 vector that follows a multivariate normal distribution with zero means and a

variance-covariance matrix Σx whose diagonal elements are 1 and off-diagonal elements are all 0.8,

and we set β0 = 0.1 and β = (0, 0.15,−0.6, 0, 0.7,−0.07). With different specifications of which

elements of xi are included in the model, we have S = 26 − 1 candidate models containing at least

one element of xi. zi is an omitted variable that is in the data generating process (DGP) but not

included in any candidate model. It also follows a normal distribution with a zero mean and unit

variance and is correlated with each element of xi with correlations of 0.8. The value of θ determines

whether and how severe the candidate models are misspecified, and we consider two settings of θ.

Design 1.1: We set θ = 0.3, and thus, omitting zi causes all of the candidate models to be

misspecified. In this case, we compare the competing predictions in terms of the relative KL

loss (RKL) with respect to that obtained from the best single candidate model, i.e.,

RKL = KL−KLbs, (23)

where the KL loss of a method is computed by

KL = n−1eval

neval∑
i=1

[
µi log(µi)− µi − µixT

i β̂ + exp(xT
i β̂)

]
, (24)

β̂ is the estimator of the β obtained by applying the method to the in-sample dataset (esti-

mation sample), neval = 1000 is the size of the evaluation sample, and KLbs is the minimum

KL loss produced by the best single candidate model. To avoid randomness, we replicate the
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estimation and evaluation D = 1000 times and report the average and standard error of RKL

across replications. To examine the optimality of the KL-based model averaging (KL-MA)

method, we also examine how the ratio KL(ŵ)/ infw KL(w) behaves as the sample size in-

creases, where ŵ is the weights obtained from (9) and infw KL(w) is the minimum loss over

all possible weight choices.

Design 1.2: We set θ = 0, such that the correct models are included in the set of candidate

models. In this case, the true model is to include x2i, x3i, x5i, and x6i, while the correct

model can be any that includes at least these four covariates, e.g., the largest model with all

six covariates. With correct models included in the model space, we focus on the consistency

of model averaging estimates of βtrue, the result shown by Theorem 2. We evaluate the accu-

racy of coefficient estimates based on the average mean square error (MSE) of β̂(ŵ) across

replications, i.e.,

MSE = D−1
D∑
d=1

∥∥∥β̂(d)
(ŵ(d))− βtrue

∥∥∥2 , (25)

where β̂
(d)

(ŵ(d)) is the KL-MA coefficient estimates in the dth replication.

Design 2

Next, we consider the case where the number of covariates in each candidate model diverges with

the sample size. We let the dimension of β depend on n as

β = (0, 0.15,−0.6, 0, 0.7,−0.07, 0, 0.15,−0.6, 0, 0.7,−0.07, · · · )Tbn0.3c.

where the subscript bn0.3c is the speed at which the dimension of β increases and b·c takes the

integer part of the number (see Condition 5 for the restriction on the divergent speed of p). The

covariates xi are generated the same as in Design 1 but with the divergent dimension corresponding

to β. The remaining setting is identical to Design 1, and we also consider two subcases that differ

in terms of whether the model space contains correct models:

Design 2.1: θ = 0.3, such that all candidate models are misspecified.

Design 2.2: θ = 0, such that correct models are included in the set of candidate models.
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In all designs, we consider the sample size for estimation as n = 50, 100, 200, 400, and 800.

4.2 Implementation

We compare our KL-MA method with four prevalent model selection methods: AIC, BIC (Buck-

land et al., 1997), least absolute shrinkage and selection operator (Lasso) and post-Lasso, and with

three other averaging methods: smooth-AIC (SAIC) and smooth-BIC (SBIC) (see, e.g., Hjort and

Claeskens, 2003; Claeskens et al., 2006; Zhang et al., 2016) and optimal model averaging (OPT) by

Zhang et al. (2016). We also compare with bagging, a popular ensemble learning method, which is

related with model averaging since it also combines different base learners.1

The KL-MA predicted value is µ̂i(ŵ,y) = exp
{
xT
i β̂(ŵ)

}
, where the estimated weights are

obtained by solving the optimization (9). The two information criteria (IC) can be computed as

AIC = −2Ls + 2ps and BIC = −2Ls + ps log(n),

where Ls is the log likelihood of the sth model. The associated IC-based averaging uses the weights

ws = exp(−ICs/2)/
S∑
s=1

exp(−ICs/2).

where IC represents either AIC or BIC.

The Lasso estimator of β for Poisson regressions is obtained by minimizing the following ob-

jective function:

lλ(β) = − 1

n

n∑
i=1

{
yix

T
i β − exp(xT

i β)− log(yi!)
}

+ λ‖β‖1,

where ‖β‖1 =
∑p

i=1 |βi|, and λ is the tunning parameter chosen by 5-fold cross-validation. Specif-

ically, we divide the total observations into five folds. For each candidate value λt in the searching

range (e.g., 100 grids between 0.001 and 1), we minimize lλt(β) using four folds to obtain β̂ and

compute the value of the negative log-likelihood function with β̂ using the remaining fold. We

repeat this step for five times with different choices of training folds and sum up the five negative

1Also compared includes the ridge estimator, which is also a shrinkage-type estimator like Lasso. The relative

KL-divergence of the ridge estimator is similar to that of Lasso, and thus omitted here.
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log-likelihoods to obtain L(λt). Then, the optimal tunning parameter is the one that minimizes

L(λt). Following the idea of Belloni and Chernozhukov (2013), we can implement post-Lasso,

which uses the selected covariates by Lasso to estimate the coefficients with GLM.

The OPT method of Zhang et al. (2016) chooses the weights by minimizing the following crite-

rion:

P(w) = −2 log g{y|µ̂(w,y)}+ λnw
Tk,

where k = (k1, k2, ..., kS)T, ks is the number of covariates used in the sth candidate model and λn

is a tuning parameter. For this method to work, Zhang et al. (2016) suggested two choices of tuning

parameters, λn = 2 (denoted as OPT1) and λn = log(n) (denoted as OPT2), which lead to AIC and

BIC selection, respectively, when the weights only take values of 0 and 1.

Finally, to implement bagging for Poisson regressions and faciliate comparison, we replace the

standard base learners in bagging by the candidate models the same as our KL-MA, and we also

attach the weights to each coefficient estimator like KL-MA (rather than to the outcome variable as

in the standard bagging) in order to be able to compute the KL loss.

We compare these methods by the relative KL divergence, defined as RKL = KL − KLbs,

where KL is the KL divergence produced by each method, and KLbs is the minimum KL divergence

produced by the best single candidate model.

4.3 Simulation results

We first examine the performance of competing methods when all candidate models are misspecified

in the finite-dimensional case. Table 1 presents the mean and standard deviation of the relative

KL divergence of all methods. The full model performance is reported in the last column as a

benchmark. The minimum average relative KL divergence (RKL) in each row is highlighted in

bold. In general, we find that the performance of all methods improves as n increases, and KL-MA

produces the smallest RKL in almost all cases. In particular, when n = 50, KL-MA produces the

minimum RKL on average with a fairly small standard deviation, closely followed by OPT1, and

then by SAIC and OPT2. Lasso is less preferred than smoothed-IC averaging, and the IC-based

model selection, post-Lasso and bagging perform even worse, with the average RKL almost twice
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as much as that of KL-MA as well as a large standard deviation. As the sample size increases, KL-

MA generally remains the best method in terms of the KL divergence, but the difference between

KL-MA and OPT1 and OPT2 becomes smaller. The superiority of these three methods over others

is more prominent when n is large. The performance of Lasso and post-Lasso also improves as n

increases. These results demonstrate the superiority of model averaging over model selection when

all candidate models are misspecified. They also illustrate the advantages of using an unbiased

criterion of KL divergence to choose the weights, compared to those using a biased criterion.

INSERT TABLE 1 HERE

Figure 1(a) plots the ratio of KL divergence produced by KL-MA over that given by the infeasi-

ble optimal averaging, i.e., KL(ŵ)/ infw KL(w), in the finite-dimensional case. As the estimation

sample size increases, the ratio converges to 1 monotonically, confirming the asymptotic optimality

of Theorem 1.

INSERT FIGURE 1 HERE

We now examine the case in which there exist correct models in the set of candidate models with

finite-dimensional covariates. In this case, Condition 5 is violated, and thus, asymptotic optimality

does not hold. Hence, we focus on verifying the consistency of averaging coefficient estimates. The

upper panel of Table 2 presents the MSE of coefficient estimates of KL-MA as n increases in the

finite-dimensional case. We find that the MSE decreases when
√
p/n decreases, confirming the

consistency result of Theorem 2.

INSERT TABLE 2 HERE

Next, we consider the design when the number of covariates and candidate models diverges with

the sample size. Table 3 compares the KL loss of competing methods when all candidate models are

misspecified (Design 2.1). In this case, the KL loss of all methods does not necessarily decreases

monotonically as the estimation sample size n increases because the dimension of the covariates

and candidate models is also increasing, leading to potentially larger loss. When n is small, OPT2
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appears to perform best, with the smallest average RKL, and KL-MA follows closely, with only a

marginally greater loss. However, the performance of OPT2 is not stable as n increases. In contrast,

KL-MA and OPT1 perform rather stably for different sample sizes. These two methods perform

similarly and deliver the lowest KL loss when n is at least 200. The popular model averaging

methods using smoothed IC do not allow for divergent dimension and thus do not work well in this

case. Figure 1(b) shows the behavior of KL(ŵ)/ infw KL(w) as n increases when all candidate

models are misspecified, and we also find a generally converging pattern, although the curve is less

smooth than the finite-dimensional case.

INSERT TABLE 3 HERE

The bottom panel of Table 2 reports how the MSE of KL-MA coefficient estimates behaves as

n increases in the divergent-dimensional design. Again, we see a convergence pattern, as in the

fixed-dimensional case, providence evidence of the validity of Theorem 2 in divergent-dimensional

situations.

5 Explaining and predicting corporate innovation outcomes

In this section, we apply the KL-based model averaging to study corporate innovation outcomes.

Recently, Sunder et al. (2017) have studied the determinantion of corporate innovation outcomes

measured by the number of patents, with a particular focus on the role of CEOs’ hobby of flying

airplanes. They argued that CEOs with a pilot license are characterized by higher risk-taking propen-

sity, with a desire to pursue novel experiences, and therefore tend to implement more risky managing

policies, including high R&D expenditure. As a result, Sunder et al. (2017) found that CEOs’ hobby

of flying airplanes is associated with significantly better corporate innovation outcomes, measured

by more patents and citations.

We revisit the potential effect of pilot CEOs on innovation and also try to predict innovation

outcomes given possible determinants suggested by Sunder et al. (2017). We follow Sunder et al.

(2017) to measure the innovation by the number of patent applications during the year and construct

a pilot CEO dummy that equals 1 if a CEO holds a pilot license and zero otherwise. Other covari-
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ates include firm characteristics, namely the logarithm of total assets (log(assets)), the logarithm of

the ratio of net property, plant, and equipment to the number of employees (log(PPE/EMP)), stock

returns, Tobin’s q, and institutional holdings. Also included are CEOs’ characteristics to capture

their extrinsic incentives, human capital, and other behavioral traits, namely CEOs’ tenure status

(log(1+tenure)), the sensitivity of CEO wealth to stock volatility (log(1+vega)), the sensitivity of

CEO wealth to performance (log(1+delta)), age (log(CEO age)), overconfidence, and dummy vari-

ables for CEOs’ education background: whether a CEO has top university degrees (top university),

technical education, a PhD degree in technical education (PhD in tech. edu), finance education, mil-

itary experience, and no schooling information. Thus, we have 17 covariates in total.2 We collect

the data from ExecuComp, BoardEx, Compustat, the NBER patent database, and the U.S. Federal

Aviation Administration airmen certification records and employ the sample from 1994 to 2003,

excluding missing observations. We also exclude financial firms and regulated utilities as in Sun-

der et al. (2017), and obtain a data set largely similar to that of Sunder et al. (2017), consisting of

5371 observations. To stay close to Sunder et al. (2017) for comparison purposes, we estimate a

cross-sectional regression even though panel data are available. Moreover, a large number of miss-

ing observations can cause a lack of observations if we wish to obtain a balanced panel. Model

averaging for panel Poisson regression is an interesting topic for future research.

With a large number of covariates, model uncertainty is an important issue, because the empir-

ical results may vary across different model specifications. For example, the estimated coefficients

of pilot CEO and log(assets) can vary by roughly 10% and 50%, respectively, across specifications,

and the estimators of military experience and overconfidence can change from strongly significant to

insignificant, when some CEO characteristic variables are included (see Table A.3 in the Appendix

for estimation results obtained under a selected set of different specifications). The prediction of

innovation outcome also varies across specifications to a large extent. Therefore, it is crucial to

account for such model uncertainty when examining the determinants and predicting the number of

patent applications. With a count measure as the outcome variable and to address model uncertainty,

we employ the KL-based model averaging method for Poisson regressions.

2See Tables A.2 in the Appendix for the descriptive statistics of the variables.
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Since there are a vast number of candidate models if we consider all possible combinations of

covariates, we first screen the candidate models prior to model averaging as discussed in Section 3.3.

We consider two model screening procedures to prepare the set of candidate models as summarized

in Table A.4 in the Appendix. First, since the pilot CEO dummy is the variable of interest, we

include pilot CEO and the intercept in all candidate models. The remaining covariates are arranged

in descending order according to the absolute value of their bivariate correlations with the outcome

variable. Then, the candidate models include one extra covariate at each time based on the ordering.

We refer to this approach as Screening 1. As a second screening method (Screening 2), we do not

fix pilot CEO in each candidate model but sort all covariates and construct candidate models by

including one extra covariate at each time based on the descending order of bivariate correlation,

as above. These two model screening procedures based on bivariate correlation are in line with the

ideas of sure independence screening proposed by Fan and Lv (2008) and Fan and Song (2010).

Section 3.3 provides theoretical justifications of the pre-screening model averaging in both cases

with and without correct models in the set of candidate models.

We first study how potential determinants affect corporate innovation outcome based on the

KL-MA coefficient estimates. Statistical inference of model averaging estimators is a challenging

task and has not been much studied in the literature, because the estimated averaging weights are

random and candidate models may be misspecified. A working method is bootstrapping advocated

by many studies, e.g., Buckland et al. (1997) and Hansen and Racine (2018), although its theoretical

justification warrants future research. We adopt this technique to obtain the distribution of KL-MA

coefficient estimators.

INSERT TABLE 4 HERE

Table 4 provides the coefficient estimates of KL-MA using three model screening procedures

and their bootstrap p-values based on 1000 resamplings. We also report the estimates of the full

model for comparison. The full model coefficient estimates are very similar to those of Sunder et al.

(2017), and we find that a CEO having a pilot license is strongly and significantly associated with

higher innovation outcomes. Other significant determinants include log(PPE/EMP), Tobin’s Q, in-

stitutional holdings, CEO’s age, CEO’s top university experience and finance degree. The KL-MA
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coefficient estimates are in line with but also differ from the full model estimates to certain extent.

Importantly, we find that when we account for model uncertainty, the significance of the effect of

pilot CEO is weakened. In particular, if we prepare all candidate models as nested using model

screening procedures 1, the estimated coefficient of pilot CEO is less sizeable and its p-value in-

creases to almost 0.05, much greater than that produced by the full model. If we consider more

flexible candidate models allowing for a higher degree of model uncertainty, as in screening proce-

dure 2, the variability of estimated coefficient of pilot CEO is even larger, leading to further weaker

statistical significance. These results suggest that the strong and significant association between pi-

lot CEO and corporate innovation outcomes may not be very robust. In fact, if the full model does

not coincide with the DGP and some covariates that are correlated with pilot CEO but irrelevant for

innovation are included in the models, they may contaminate the effect of pilot CEO (either inflate

or deflate its estimate), leading to spurious inference. To confirm this explanation, we further ex-

amine the association between pilot CEO and insignificant determinants from the full model. The

insignificant determinants based on the full model include log(assets), stock return, log(1+delta),

log(1+vega), technical education, PhD in technical education, no school information, military, and

overconfidence. We regress pilot CEO on those insignificant determinants and find that CEOs who

hold pilot license also often hold a PhD in technical education and have higher vega values in their

compensation packages (higher CEO’s wealth). This outcome is expected because pursuing a pilot

license is technically demanding and also costly and thus better suits CEOs with a good technical

background who are also financially unconstrained. The high correlation between pilot CEO and

these personal characteristics is also confirmed by Sunder et al. (2017) based on a descriptive analy-

sis (see their Table 3). Due to such a correlation, if these personal characteristics are redundant in the

innovation regression, including these covariates does not improve the consistency but may largely

contaminate the estimate of pilot CEO and introduce much estimation uncertainty, leading to a dif-

ferent conclusion. These findings demonstrate the necessity of controlling for model uncertainty in

such a regression with many uncertain covariates.

Next, we evaluate the prediction performance of competing methods using this real dataset.

To this end, we randomly divide the sample into two subsamples, one for estimating parameters

and weights and the other for evaluation, following the idea of Hansen and Racine (2012) and

Lehrer and Xie (2017). Let n0 and n1 = n − n0 denote the sizes of the estimation and evaluation
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samples, respectively. We range n0 among b0.7nc, b0.8nc and b0.9nc. We evaluate the prediction

performance using two measures. First, we consider the relative KL divergence with respect to the

best single model. Unlike in the simulation, the true density function of y∗, f(y∗) inEf(y∗) log f(y∗)

is unknown in real-data applications. Since this term is common across all methods, we omit it in

KL and compute the sample version of the relative KL divergence as

SRKL = −n−11

n1∑
i=1

[
yix

T
i β̂(ŵ)− exp{xT

i β̂(ŵ)} − log(yi!)
]
.

Second, we also measure the prediction performance by the relative mean squared prediction error

(RMSPE), i.e.,

RMSPE = MSPE−MSPEbs,

where MSPE = 1/n1

∑n
i=n0+1(yi− µ̂i)2 and MSPEbs is the MSPE of the best single model, which is

defined as the single candidate model that produces the minimum MSPE. To avoid randomness and

abnormally large value due to the exponential function, we repeat the random sample division, pre-

diction, and evaluation for 200 times, and report the trimmed mean and trimmed standard deviation

of the SRKL and RMSPE across replications, excluding the lower and upper 10% of the values.

INSERT TABLES 5 and 6 HERE

Tables 5 and 6 present the trimmed mean and trimmed standard deviation of SRKL and RMSPE

based on the two screening methods to construct candidate models. The two screening methods lead

to similar prediction for KL-MA and IC-based methods, while the prediction by Lasso, post-Lasso

and the full model does not depend on pre-screening. In almost all cases, the full model performs

worst, suggesting a large degree of efficiency loss when all covariates are included. As discussed

above, several firm and CEO characteristics are insignificantly related with the innovation outcome

in the full model, and some of these insignificant variables are strongly correlated with pilot CEO.

Hence, including these insignificant covariates hardly adds extra information for prediction, but can

substantially inflate the prediction variance.

Among the remaining methods, KL-MA and Lasso seem to produce the most accurate predic-

tion. When we use b0.7nc for estimation, Lasso produces the lowest RMSPE, closely followed by

KL-MA and post-Lasso. Further examination reveals that Lasso typically favors small models, with
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the average number of nonzero coefficients across replications around 8. The most frequently se-

lected covariates by Lasso include pilot CEO, log(PPE/EMP), Tobin’s q, and top university. These

covariates also often appear in the models that receive large weights by KL-MA. In contrast, IC-

based selection and averaging all perform poorly in these cases as they tend to choose or assign

heavy weights on a large model. These results suggest that when the sample size is relatively small,

estimation variance takes a large part of prediction error. Thus Lasso prediction that relies on a small

model leads to significant variance reduction and produce low SRKL and RMSPE. Although weight

estimation introduces extra uncertainty for KL-MA, it still performs reasonably well with SRKL

slightly higher than Lasso, even when the sample size is not very large.

As the estimation sample size increases, the advantages of KL-MA become more obvious, and it

outperforms other methods, including Lasso and OPT. The trimmed mean SRKL of KL-MA is more

than 15% and 30% less than that of the second-best method when n0 = b0.8nc and n0 = b0.9nc,

respectively, and its RMSPE is even more than 44% lower than that of the second-best method when

n0 = b0.9nc. The good performance of KL-MA can be partly explained by increasing accuracy

in weight estimation as the sample size increases, and it also confirms the asymptotic optimality of

KL-MA as shown in the theory and simulation studies.

The prediction horse race again shows the importance of accounting model uncertainty in em-

pirical innovation regressions and the advantages of our proposed model averaging approach.

6 Conclusion

Poisson regressions are widely used when the dependent variables are count data, such as in corpo-

rate finance, where significant interest lies in understanding the determinants of innovation outcomes

typically measured by the number of patent or citations. This paper proposes a model averaging es-

timation method based on the Kullback-Leibler divergence that allows researchers to address model

uncertainty in Poisson regressions. Our weighting criterion is an unbiased estimator of the KL di-

vergence. We show that the proposed model averaging estimate is asymptotically optimal in the

sense that it yields a KL divergence that is asymptotically identical to that resulting from the infea-

sible best possible averaging estimator when all candidate models are misspecified. In a different
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situation where there exist correct models in the candidate models, our model averaging estimates

can also produce consistent estimates of the slope coefficients. An important advantage of our tech-

niques is that we allow the number of covariates and the number of candidate models to diverge

as the sample size increases. Using the proposed approach to revisit the association between pilot

CEO and innovation outcome measured by the number of patent applications, we find that the pilot

CEO dummy does associate with higher innovation outcomes to some extent, but this association

is less strong when model uncertainty is considered and thus needs to be interpreted with caution.

Our KL-MA performs well in predicting the corporate innovation outcome in the presence of great

model uncertainty.

Several relevant questions deserve future research. First, this paper focuses on the case of p < n,

although the dimension of each candidate model is allowed to diverge as n increases. It remains an

open and challenging topic to study optimal averaging for Poisson regressions when p > n. Second,

the current weighting scheme requires that all weights lie between 0 and 1, and that they sum up to

one. In some situations with highly similar candidate models, negative weights are likely to appear.

Moreover, if some candidate models are not competitive, the sum-to-one constraint may need to be

relaxed (Ando and Li, 2014). A comprehensive theoretical analysis on relaxing weight restrictions

calls for future research. Finally, while bootstrap provides a feasible and promising way of quantify-

ing the variability of model averaging estimators, inference of optimal model averaging estimators

remains an open but important research question.
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Table 1: Relative KL divergence in Design 1.1 (×10−3)

n KL-MA AIC BIC Lasso Post-Lasso SAIC SBIC OPT1 OPT2 Bagging Full

50 Mean 19.836 35.881 41.728 39.554 50.581 23.530 25.216 19.897 22.278 38.143 41.852

Std 25.242 40.814 43.785 39.720 40.398 25.374 26.614 25.107 28.134 23.831 38.093

100 Mean 8.929 13.894 17.965 21.313 24.365 9.902 11.692 8.949 11.436 38.847 17.077

Std 12.856 16.626 21.724 18.854 18.413 12.758 14.643 12.872 16.385 16.313 15.021

200 Mean 4.785 7.173 8.377 13.814 14.335 4.618 5.198 4.799 6.552 43.320 8.153

Std 5.990 7.600 8.762 9.079 8.581 5.708 6.302 6.001 8.012 10.323 7.206

400 Mean 1.798 3.073 4.294 8.791 9.264 2.063 2.587 1.806 2.913 43.622 3.349

Std 3.003 3.769 4.743 4.003 3.927 2.832 3.076 3.004 4.042 7.547 3.428

800 Mean 0.884 1.401 1.820 6.755 6.957 0.937 1.289 0.900 1.494 47.393 1.499

Std 1.462 1.696 2.838 2.080 2.081 1.380 1.785 1.470 2.075 5.885 1.625

Notes: This table presents the relative KL divergence, defined by RKL = KL − KLbs, where KL is the KL divergence produced by each method, and KLbs is the minimum KL divergence produced

by the best single candidate model. The results here are for Design 1.1, where the candidate models are finite-dimensional and all misspecified. The mean and standard deviation are obtained from 1000

replications.
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Table 2: The MSE of KL-MA coefficient estimates when candidate models include correct models
n 50 100 200 400 800

Finite dimension p 7 7 7 7 7

(Design 1.2)
√
p/n 0.374 0.265 0.187 0.132 0.094

MSE 0.444 0.320 0.254 0.180 0.143

Divergent dimension p 3 3 4 6 7

(Design 2.2)
√
p/n 0.245 0.173 0.141 0.122 0.094

MSE 0.178 0.129 0.176 0.161 0.143

Notes: n is the sample size for estimation. p is the dimension of covariates of the full model. Design 1.2 and 2.2 consider finite- and divergent-

dimensional candidate models, respectively, with at least one correct model in the model space.
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Table 3: Relative KL divergence in Design 2.1 (×10−3)

n KL-MA AIC BIC Lasso post-Lasso SAIC SBIC OPT1 OPT2 Bagging Full

50 Mean 3.175 9.139 8.572 13.289 13.773 4.218 3.475 3.150 2.693 3.779 8.294

Std 11.740 15.907 15.025 22.082 22.643 13.290 12.815 11.793 11.062 7.960 16.683

100 Mean 0.854 6.119 6.636 8.291 8.237 2.381 2.362 0.884 0.688 1.439 2.739

Std 4.902 7.779 8.083 6.875 6.715 5.268 5.386 4.938 4.551 5.704 6.202

200 Mean 1.839 3.105 6.837 10.468 10.151 2.387 4.407 1.830 3.990 15.149 1.800

Std 3.658 4.500 7.306 6.874 5.970 3.592 5.080 3.645 5.611 5.777 3.517

400 Mean 1.318 2.305 4.467 7.620 7.693 1.575 2.726 1.319 2.934 45.731 1.871

Std 2.406 2.966 5.003 3.032 2.947 2.292 3.065 2.407 3.884 7.902 2.512

800 Mean 0.884 1.401 1.820 6.755 6.957 0.937 1.289 0.900 1.494 47.393 1.499

Std 1.462 1.696 2.838 2.080 2.081 1.380 1.785 1.470 2.075 5.885 1.625

Notes: This table presents the relative KL divergence, defined by RKL = KL − KLbs, where KL is the KL divergence produced by each method, and KLbs is the minimum KL divergence produced by

the best single candidate model. The results here are for Design 2.1, where the candidate models are divergent-dimensional and all misspecified. The mean and standard deviation are obtained from 1000

replications.
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Table 4: Coefficient estimates of innovation regression

Full model KL-MA

R2=0.024 Screening 1 Screening 2

Coef. p-value Coef. p-value Coef. p-value

Pilot CEO 0.204 0.017 0.194 0.042 0.192 0.042

log(assets) 0.027 0.236 0.024 0.210 0.024 0.210

log(PPE/EMP) 0.069 0.000 0.065 0.000 0.065 0.000

Stock return −0.0004 0.355 0.000 0.406 0.000 0.404

Tobin’s Q 0.041 0.006 0.041 0.000 0.041 0.000

Inst. holdings 0.180 0.033 0.174 0.042 0.174 0.042

log(1+tenure) −0.050 0.158 0.000 0.154 0.000 0.158

log(1+delta) 0.015 0.427 0.012 0.600 0.012 0.600

log(1+vega) 0.014 0.580 0.011 0.560 0.011 0.560

log(CEO age) 0.536 0.017 0.465 0.010 0.466 0.010

Top university 0.176 0.012 0.172 0.020 0.172 0.020

Finance education −2.14 0.001 −2.025 0.000 −2.024 0.000

Technical education 0.212 0.165 0.219 0.210 0.219 0.210

PhD in tech. edu −0.065 0.465 0.000 0.414 0.000 0.426

No school info 0.064 0.296 0.000 0.256 0.000 0.244

Military −0.134 0.402 −0.000 0.000 −0.000 0.000

Overconfidence 0.017 0.774 0.000 0.810 0.000 0.820

constant −1.071 0.221 −0.880 0.226 −0.882 0.226

Notes: This table presents the coefficient estimates and associated p-values of the full model and KL-MA using three different pre-screening methods.

The p-values of KL-MA are obtained from bootstrapping with 1000 resamplings. Screening 1 includes pilot CEO and the intercept in all candidate

models, and adds one extra covariate at each time based on the absolute value of their bivariate correlations with the outcome variable. Screening 2

resembles Screening 1 but does not fix pilot CEO in all candidate models.
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Table 5: Prediction of innovation outcomes using Screening 1: SRKL and RMSPE
n0 KL-MA AIC BIC Lasso Post-Lasso SAIC SBIC OPT1 OPT2 Bagging Full

SRKL

b0.7nc = 3759 Mean 0.100 0.190 0.174 0.133 0.128 0.189 0.170 0.164 0.113 1.069 0.190

Std 0.121 0.195 0.170 0.034 0.035 0.192 0.161 0.156 0.104 0.123 0.195

b0.8nc = 4296 Mean 0.082 0.156 0.150 0.140 0.135 0.156 0.148 0.140 0.097 1.073 0.156

Std 0.134 0.176 0.172 0.039 0.039 0.176 0.170 0.158 0.109 0.141 0.176

b0.9nc = 4833 Mean 0.057 0.122 0.122 0.154 0.149 0.122 0.122 0.110 0.081 1.087 0.122

Std 0.107 0.200 0.197 0.055 0.055 0.199 0.197 0.173 0.107 0.184 0.200

RMSPE

b0.7nc = 3759 Mean 10.607 64.924 46.345 0.925 0.981 63.541 41.259 43.591 24.000 17.871 64.982

Std 21.058 198.863 128.045 0.659 0.656 192.195 109.358 112.565 60.516 2.930 198.378

b0.8nc = 4296 Mean 5.386 16.980 13.904 1.105 1.154 16.935 13.204 13.202 7.853 17.551 16.979

Std 13.126 37.604 29.980 0.678 0.677 37.532 27.684 26.277 15.434 2.713 37.578

b0.9nc = 4833 Mean 0.821 7.199 6.912 1.426 1.475 7.198 6.805 6.111 2.889 17.602 7.204

Std 3.956 21.995 21.449 0.810 0.811 21.985 21.303 19.285 10.627 3.168 22.011

Notes: This table presents the sample version of the relative KL divergence (SRKL) and the relative mean squared prediction error (RMSPE). The estimation sample n0 ranges from b0.7nc to b0.9nc. The

mean and standard deviation are obtained from 1000 replications. Screening 1 includes pilot CEO and the intercept in all candidate models, and adds one extra covariate at each time based on the absolute

value of their bivariate correlations with the outcome variable.
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Table 6: Prediction of innovation outcomes using Screening 2: SRKL and RMSPE
n0 KL-MA AIC BIC Lasso Post-Lasso SAIC SBIC OPT1 OPT2 Bagging Full

SRKL

b0.7nc = 3759 Mean 0.099 0.189 0.174 0.133 0.128 0.188 0.170 0.163 0.112 1.067 0.190

Std 0.120 0.194 0.169 0.034 0.035 0.191 0.160 0.155 0.104 0.122 0.195

b0.8nc = 4296 Mean 0.082 0.155 0.154 0.140 0.135 0.155 0.148 0.139 0.097 1.072 0.156

Std 0.134 0.176 0.172 0.039 0.039 0.176 0.170 0.158 0.109 0.141 0.176

b0.9nc = 4833 Mean 0.057 0.123 0.123 0.154 0.149 0.123 0.122 0.111 0.081 1.087 0.122

Std 0.107 0.199 0.197 0.055 0.055 0.199 0.196 0.173 0.107 0.183 0.200

RMSPE

b0.7nc = 3759 Mean 10.630 64.909 46.330 0.925 0.981 63.525 41.245 43.585 24.035 17.751 64.982

Std 21.077 198.851 128.034 0.659 0.656 192.184 109.347 112.575 60.661 2.785 198.378

b0.8nc = 4296 Mean 5.381 16.974 13.898 1.105 1.154 16.929 13.199 13.197 7.854 17.480 16.979

Std 13.088 37.602 29.968 0.678 0.677 37.531 27.673 26.270 15.424 2.624 37.578

b0.9nc = 4833 Mean 0.838 7.216 6.929 1.426 1.475 7.215 6.822 6.122 2.903 17.586 7.204

Std 3.974 21.997 21.452 0.810 0.811 21.988 21.307 19.275 10.626 3.101 22.011

Notes: This table presents the sample version of the relative KL divergence (SRKL) and the relative mean squared prediction error (RMSPE). The estimation sample n0 ranges from b0.7nc to b0.9nc.

The mean and standard deviation are obtained from 200 replications. Screening 2 sorts all covariates and constructs candidate models by including one extra covariate at each time based on the descending

order of the absolute value of bivariate correlation.
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Figure 1: The ratio of KL divergence of KL-MA over the infeasible best possible model averaging
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(a) Finite dimension (b) Divergent dimension

Notes: This figure plots the ratio of KL divergence produced by KL-MA over that given by the infeasible optimal averaging, i.e.,

KL(ŵ)/ infw KL(w), when all candidate models are misspecified. The left subfigure considers the finite-dimensional case, and the right sub-

figure considers the divergent-dimensional case.
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Appendix

This appendix includes the proofs of theorems and additional results of the empirical applica-

tion. First, Section A.1 presents some lemmas and their proofs. Then Sections A.2 and A.3 provide

the proofs of Theorems 1 and 2, respectively. Finally, Section A.4 provides additional empirical

results.

A.1 Lemmas

To prove the theorems, we first establish Lemmas 1–5. All limiting results below are obtained by
letting n go to infinity unless stated otherwise.

Proof of Lemma 1. To show the unbiasedness of our weight-choice criterion, first note that for
any i = 1, 2, ..., n,

Ef(y){µi log µ̂i(w,y)} =
n∑

j=1,j 6=i

∞∑
yj=0

∞∑
yi=0

[
log{µ̂i(w,y)}µi

e−µiµyii
yi!

∏
j 6=i

e−µjµ
yj
j

yj!

]

=
n∑

j=1,j 6=i

∞∑
yj=0

∞∑
yi=0

[
(yi + 1) log{µ̂i(w,y)}e

−µiµyi+1
i

(yi + 1)!

∏
j 6=i

e−µjµ
yj
j

yj!

]

=
n∑

j=1,j 6=i

∞∑
yj=0

∞∑
yi=1

[
yi log{µ̂i(w,y(yi−1))}e

−µiµyii
yi!

∏
j 6=i

e−µjµ
yj
j

yj!

]

=
n∑

j=1,j 6=i

∞∑
yj=0

∞∑
yi=0

[
yi log{µ̂i(w,y(yi−1))}e

−µiµyii
yi!

∏
j 6=i

e−µjµ
yj
j

yj!

]

= Ef(y)[yi log{µ̂i(w,y(yi−1))}]. (A.1)

Combining (A.1) with (5) and (6), we obtain

Ef(y){C(w)} = Ef(y) log f(y) + Ef(y)
n∑
i=1

[µ̂i(w,y) + log(yi!)− yi log{µ̂i(w,y(yi−1))}]

= Ef(y) log f(y) + Ef(y)
n∑
i=1

{µ̂i(w,y) + log(yi!)− µi log µ̂i(w,y)}

= Ef(y){KL(w)}.
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Lemma 2 Under Conditions 2 and 3, we have∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥ = OP (
√
pn), and

∥∥∥∥∥
n∑
i=1

yixi

∥∥∥∥∥ = OP (
√
pn),

where εi = yi − µi.

Proof of Lemma 2. Let X = (x1,x2, . . . ,xn)T. We first consider ‖
∑n

i=1 εixi‖.

E

(
1
√
pn

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
)2

=
1

pn
E(εTXXTε)

=
1

pn
tr{XXTCov(ε)}

=
1

pn

n∑
i=1

‖xi‖2Var(yi)

≤ max
1≤i≤n

‖xi‖2

p

1

n

n∑
i=1

Var(yi)

≤ max
1≤i≤n

‖xi‖2

p

√
‖µ‖2
n

≤
√
C2C

2
3 <∞, (A.2)

where the last inequality is due to Lemma 2 and (12) in Lemma 3. So we have

1
√
pn

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥ = OP (1). (A.3)

Next, we consider ‖
∑n

i=1 yixi‖. Under Condition 2 and (12) in Condition 3, we have∥∥∥∥∥
n∑
i=1

µixi

∥∥∥∥∥ ≤
n∑
i=1

|µi|‖xi‖

≤

√√√√ n∑
i=1

|µi|2

√√√√ n∑
i=1

‖xi‖2

≤
√
C2n

√
n max

1≤i≤n
‖xi‖2

≤
√
C2n

√
C2

3np

≤
√
C2C3

√
pn. (A.4)

Then combining (A.3) and (A.4), we obtain∥∥∥∥∥
n∑
i=1

yixi

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
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µixi

∥∥∥∥∥+

∥∥∥∥∥
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∥∥∥∥∥
2



= O(
√
pn) +OP (

√
pn)

= OP (
√
pn).
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Lemma 3 Under Conditions 1, 3 and 4, we have

max
1≤s≤S

∥∥∥∥∥
n∑
i=1

ε(s),ix(s),i

∥∥∥∥∥ = OP (
√
Spn), (A.5)

where ε(s),i = yi − exp(xT
(s).iβ

∗
(s)).

Proof of Lemma 3. First, recall that

f(s)(y|β(s)) =
n∏
i=1

µyi(s),ie
−µ(s),i

yi!
, and µ(s),i = exp(xT

(s),iβ(s)),

i = 1, . . . , n, yi = 0, 1, . . .

Then the KL divergence is written as

KL(β(s)) = Ey log
f(y)

f(s)(y|β(s))

= Ey log f(y) +
n∑
i=1

Ey log(yi!) +
n∑
i=1

{
exp(xT

(s),iβ(s))− µixT
(s),iβ(s)

}
.

Using (15) in Condition 4, we have

∂2KL(β∗(s))

∂β(s)∂β
T
(s)

=
n∑
i=1

exp(xT
(s),iβ

∗
(s))x(s),ix

T
(s),i > 0.

With the second-order derivative of KL(β∗(s)) larger than zero, β∗(s) that leads to the minimum
KL(β(s)) satisfies the first-order condition, i.e.,

0 =
∂KL(β∗(s))

∂β(s)

=
n∑
i=1

{
exp(xT

(s),iβ
∗
(s))− µi

}
x(s),i,

which, according to Condition 1, further implies that

E

[
n∑
i=1

{
yi − exp(xT

(s),iβ
∗
(s))
}
x(s),i

]

= E

{
n∑
i=1

(yi − µi)x(s),i

}
+

n∑
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∗
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}
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= 0. (A.6)

Next, based on Condition 2,
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Spn
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p

1

n
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Var(yi)

≤
√
C2C

2
3 <∞, (A.7)

where Πs is a selection matrix picking the covariates included in the sth model, i.e., XΠs = X(s) and
xT
i Πs = xT

(s),i. The second step in (A.7) is based on (A.6), and the last inequality is from Condition 2
and (12) in Condition 3. Hence, we have

1√
Spn

max
1≤s≤S

∥∥∥∥∥
n∑
i=1

ε(s),ix(s),i

∥∥∥∥∥ = OP (1), (A.8)

and this completes the proof.

�

Lemma 4 Under Conditions 1, 3 and 4,

max
1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥ = OP (S1/2p1/2n−1/2), (A.9)

where β̂(s) is the ML estimator of the sth candidate model.

Proof of Lemma 4. The log-likelihood function of the sth model is written as

ln(β(s)) =
n∑
i=1

{
yix

T
(s),iβ(s) − exp(xT

(s),iβ(s))− log(yi!)
}
, (A.10)

4



and the ML estimator β̂(s) satisfies

∂ln(β̂(s))

∂β(s)

=
n∑
i=1

{
yi − exp(xT

(s),iβ̂(s))
}
x(s),i = 0. (A.11)

Let An(β∗(s)|δ) = {γ ∈ Rps :
√
n‖γ − β∗(s)‖/

√
Sp ≤ δ} and ∂An(β∗(s)|δ) be the boundary of

An(β∗(s)|δ). By the second-order Taylor expansion of (A.11) at β∗(s), there exists some δ > 0, such
that when n is large enough and γs ∈ ∂An(β∗(s)|δ),

max
1≤s≤S

{
ln(γs)− ln(β∗(s))

}
= max

1≤s≤S

{
n∑
i=1

ε(s),ix
T
(s),i(γs − β∗(s))−

1

2
(γs − β∗(s))T

n∑
i=1

exp(xT
(s),iβ̃(s))x(s),ix

T
(s),i(γs − β∗(s))

}

≤ Sp

[
1√
Spn

max
1≤s≤S

∥∥∥∥∥
n∑
i=1

ε(s),ix(s),i

∥∥∥∥∥
√

n

Sp

∥∥γs − β∗(s)∥∥
−1

2

n

Sp

∥∥γs − β∗(s)∥∥2 min
1≤s≤S

λmin

{
I(s)(β̃(s))

}]

≤ Sp

{
1√
Spn

max
1≤s≤S

∥∥∥∥∥
n∑
i=1

ε(s),ix(s),i

∥∥∥∥∥ δ‖νs‖ − 1

2
Cminδ

2‖νs‖2
}

= Sp

{
δOP (1)− 1

2
Cminδ

2

}
, (A.12)

where νs =
√
n
(
γ − β∗(s)

)
/δ
√
Sp and β̃(s) lies between γs and β∗(s). The last inequality in (A.12)

is due to (15) in Condition 4, and the last equality holds because

max
1≤s≤S

∥∥∥∥∥
n∑
i=1

ε(s),ix(s),i

∥∥∥∥∥ /√Spn = OP (1),

according to Lemma 3.

Finally, because of the nonnegativity of exponential function exp(·) and (15) in Condition 4, we
know

∂2ln(β(s))

∂β(s)∂β
T
(s)

= −
n∑
i=1

exp(xT
(s),iβ(s))x(s),ix

T
(s),i < 0.

Thus, the log-likelihood function is concave, and we obtain the desired result (A.9) based on (A.12).

�

Lemma 5 Under Conditions 1, 3 and 4, we have

max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β̂(s)

∥∥∥ = OP (p1/2n−1) (A.13)

5



and

max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β∗(s)

∥∥∥ = OP (S1/2p1/2n−1/2). (A.14)

Proof of Lemma 5. First, denote l(yi−1)n (β(s)) as the log-likelihood function of the sth model but
using yi − 1 instead of yi, then we have

l(yi−1)n (β(s)) =
n∑
j=1

{
yjx

T
(s),jβ(s) − exp(xT

(s),jβ(s))− log(yj!)
}
− xT

(s),iβ(s) + log(yi).

LetBn(β̂(s)|δ) =
{
γ ∈ Rps : n‖γ − β̂(s)‖/

√
p ≤ δ

}
and ∂Bn(β̂(s)|δ) be the boundary ofBn(β̂(s)|δ).

There exists some δ > 0, such that when n is large enough and γs ∈ ∂Bn(β̂(s)|δ), Taylor expansion
gives that

max
1≤i≤n

max
1≤s≤S

{
l(yi−1)n (γs)− l(yi−1)n (β̂(s))

}
= max

1≤i≤n
max
1≤s≤S

{
∂l

(yi−1)
n (β̂(s))

∂βs

(
γs − β̂(s)

)
+

1

2

(
γs − β̂(s)

)T ∂2l(yi−1)n (γ̃s)

∂βs∂β
T
s

(
γs − β̂(s)

)}

= max
1≤i≤n

max
1≤s≤S

{
−xT

(s),i

(
γs − β̂(s)

)
− 1

2

(
γs − β̂(s)

)T n∑
j=1

exp
(
xT
(s),jγ̃s

)
x(s),jx

T
(s),j

(
γs − β̂(s)

)}

=
p

n
max
1≤i≤n

max
1≤s≤S

{
−
xT
(s),i√
p

n
√
p

(
γs − β̂(s)

)
− 1

2

n
√
p

(
γs − β̂(s)

)T
I(s)(γ̃s)

n
√
p

(
γs − β̂(s)

)}

≤ p

n

{
−1

2
(Cmin + oP (1))δ2‖νs‖2 + max

1≤i≤n
max
1≤s≤S

‖x(s),i‖√
p

δ‖νs‖
}

≤ p

n

{
−1

2
δ2(Cmin + oP (1)) + δC3

}
, (A.15)

where νs = n(γs − β̂(s))/δ
√
p and γ̃s lies between γs and β̂(s). The penultimate inequality

is due to (15) of Condition 4 and the fact that ‖γs − β∗(s)‖ ≤ ‖γs − β̂(s)‖ + ‖β̂(s) − β∗(s)‖ ≤
δ
√
p/n + OP (S1/2p1/2n−1/2) = oP (1) when n is large enough. The last inequality is based on (12)

in Condition 3. Considering that l(yi−1)n (γs) is concave and reaches its maximum value at β̂
(yi−1)
(s) ,

(A.15) further implies that

max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β̂(s)

∥∥∥ = OP (p1/2n−1). (A.16)

Combining (A.9) and (A.16), we obtain that

max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β∗(s)

∥∥∥ ≤ max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β̂(s)

∥∥∥+ max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥

= OP (p1/2n−1) +OP (S1/2p1/2n−1/2)

= OP (S1/2p1/2n−1/2).

�
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A.2 Proof of Theorem 1

From the proof of Theorem 1’ of Wan et al. (2010), to prove (18), it is sufficient to verify that

sup
w∈Wn

|KL(w)−KL∗(w)|
KL∗(w)

= op(1) (A.17)

and

sup
w∈Wn

|KL(w)− C(w)|
KL∗(w)

= op(1). (A.18)

First, from (12) and (13) of Condition 3, we have

max
1≤s≤S

sup
β(s)∈O(β∗

(s)
,ρ)

1
√
psn

n∑
i=1

exp
(
xT
(s),iβ(s)

)
‖x(s),i‖ ≤ C3C4. (A.19)

Next, by the definition of KL divergence in (5) and the differential mean value theorem, we
obtain that, when n is large enough,

sup
w∈Wn

|KL(w)−KL∗(w)|

= sup
w∈Wn

∣∣∣∣∣
n∑
i=1

[µ̂i(w,y)− µi log{µ̂i(w,y)}]−
n∑
i=1

[µ∗i (w)− µi log{µ∗i (w)}]

∣∣∣∣∣
≤ sup

w∈Wn

n∑
i=1

|µ̂i(w,y)− µ∗i (w)|+ sup
w∈Wn

n∑
i=1

µi |log {µ̂i(w,y)} − log {µ∗i (w)}|

≤ sup
w∈Wn

n∑
i=1

∣∣∣∣∣exp

(
S∑
s=1

wsx
T
(s),iβ̃(s)

)
S∑
s=1

wsx
T
i Πs

(
β̂(s) − β∗(s)

)∣∣∣∣∣
+

n∑
i=1

µi‖xi‖ sup
w∈Wn

S∑
s=1

ws

∥∥∥Πsβ̂(s) − Πsβ
∗
(s)

∥∥∥
≤ sup

w∈Wn

S∑
s=1

n∑
i=1

ws exp
(
xT
(s),iβ̃(s)

)
‖xi‖ max

1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥

+
n∑
i=1

µi‖xi‖ max
1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥

≤ max
1≤s≤S

n∑
i=1

exp
(
xT
(s),iβ̃(s)

)
‖xi‖ max

1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥

+
n∑
i=1

µi‖xi‖ max
1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥

= OP (p1/2n)OP

(
S1/2p1/2n−1/2

)
+O(p1/2n)OP (S1/2p1/2n−1/2)
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= OP (S1/2pn1/2), (A.20)

where β̃(s) lies between β̂(s) and β∗(s), and the last second equality is due to (A.19) and Lemmas 2
and 4.

Finally, using Conditions 2–4 and the triangle inequality, we have

sup
w∈Wn

|KL(w)− C(w)|

= sup
w∈Wn

∣∣∣∣∣
n∑
i=1

yi log
{
µ̂i(w,y

(yi−1))
}
− µi log {µ̂i(w,y)}

∣∣∣∣∣
≤ sup

w∈Wn

∣∣∣∣∣
n∑
i=1

(yi − µi) log {µ∗i (w)}

∣∣∣∣∣
+ sup

w∈Wn

∣∣∣∣∣
n∑
i=1

yi
[
log
{
µ̂i(w,y

(yi−1))
}
− log {µ∗i (w)}

]∣∣∣∣∣
+ sup

w∈Wn

∣∣∣∣∣
n∑
i=1

µi [log {µ̂i(w,y)} − log {µ∗i (w)}]

∣∣∣∣∣
≤

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥ sup
w∈Wn

∥∥∥∥∥
S∑
s=1

wsΠsβ
∗
(s)

∥∥∥∥∥
+ sup

w∈Wn

∣∣∣∣∣
n∑
i=1

yix
T
i

S∑
s=1

ws

(
Πsβ̂

(yi−1)
(s) − Πsβ

∗
(s)

)∣∣∣∣∣
+

n∑
i=1

µi ‖xi‖ sup
w∈Wn

S∑
s=1

ws

∥∥∥Πsβ̂(s) − Πsβ
∗
(s)

∥∥∥
≤

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥ max
1≤s≤S

‖β∗(s)‖

+

∣∣∣∣∣
n∑
i=1

yixi

∣∣∣∣∣ max
1≤i≤n

max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β∗(s)

∥∥∥
+

n∑
i=1

µi ‖xi‖ max
1≤s≤S

∥∥∥β̂(s) − β∗(s)
∥∥∥

= OP (pn1/2) +
{
O(p1/2n) +OP (p1/2n1/2)

}
OP (S1/2p1/2n−1/2)

+O(p1/2n)OP (S1/2p1/2n−1/2)

= OP (S1/2pn1/2), (A.21)

where µ∗i (w) = exp(
∑S

s=1wsx
T
(s),iβ

∗
(s)), and the last second equality is due to Lemmas 2, 4 and 5

and (14) in Condition 3.

Assuming that Condition 5 is satisfied, the above two results (A.20) and (A.21) imply (A.17)

8



and (A.18), respectively. This completes the proof.

A.3 Proof of Theorem 2

Assume that the sth0 model is a correct candidate model, we know that ‖β̂s0−βtrue‖ = OP (p1/2n−1/2).
Let wo

s0
denotes the weight vector whose sth0 element is 1 and others are 0. We note

C(wo
s0

) = log f(y) +
n∑
i=1

{
exp(xT

i β̂s0) + log(yi!)− yixT
i β̂

(yi−1)
s0

}
= log f(y) +

n∑
i=1

{
exp(xT

i βtrue) + log(yi!)− yixT
i βtrue

}
+

n∑
i=1

{
exp(xT

i βtrue)x
T
i (β̂s0 − βtrue) +

1

2
(β̂s0 − βtrue)

T exp(xT
i β̃)xix

T
i (β̂s0 − βtrue)

−yixT
i (β̂

(yi−1)
s0

− βtrue)
}

= log f(y) +
n∑
i=1

{
exp(xT

i βtrue) + log(yi!)− yixT
i βtrue

}
+p

[
− 1
√
pn

n∑
i=1

εix
T
i

√
n

p

(
β̂s0 − βtrue

)
+

1

2

√
n

p

(
β̂s0 − βtrue

)T
In(β̃)

√
n

p

(
β̂s0 − βtrue

)
−

n∑
i=1

(
1
√
pn
yix

T
i

)
n
√
p

(
β̂

(yi−1)
s0

− β̂s0
)]

, (A.22)

where In(β̃) = n−1
∑n

i=1 exp(xT
i β̃)xix

T
i , εi = yi − exp

(
xT
i βtrue

)
, and β̃ lies between β̂s0 and βtrue.

For notation convenience, we define

ηn = − 1
√
pn

n∑
i=1

εix
T
i

√
n

p

(
β̂s0 − βtrue

)
+

1

2

√
n

p

(
β̂s0 − βtrue

)T
In(β̃)

√
n

p

(
β̂s0 − βtrue

)
−

n∑
i=1

(
1
√
pn
yix

T
i

)
n
√
p

(
β̂

(yi−1)
s0

− β̂s0
)
,

and under Conditions 2–4, we have

|ηn| ≤
√
n

p

∥∥∥∥∥ 1
√
pn

n∑
i=1

εixi

∥∥∥∥∥∥∥∥β̂s0 − βtrue

∥∥∥+
n

p
λmax{In(β̃)}

∥∥∥β̂s0 − βtrue

∥∥∥2
9



+
n

2
√
p

∥∥∥∥∥ 1
√
pn

n∑
i=1

yix
T
i

∥∥∥∥∥ max
1≤i≤n

∥∥∥β̂(yi−1)
s0

− β̂s0
∥∥∥

= OP (1) + (Cmax + oP (1))OP (1) +OP (1)

= OP (1), (A.23)

where the last second equality is implied by (16) in Condition 4, Lemmas 2 and 5, and the fact
that ‖β̃ − β∗s0‖ ≤ ‖β̃ − β̂s0‖ + ‖β̂s0 − β

∗
s0
‖ ≤ ‖βtrue − β̂s0‖ + ‖β̂s0 − β

∗
s0
‖ = OP (p1/2n−1/2) +

OP (S1/2p1/2n−1/2) = oP (1) when n is large enough.

Note that from Lemma 2 and Conditions 3 and 4, when n is large enough,

max
1≤i≤n

∥∥∥β̂(ŵ)(yi−1) − β̂(ŵ)
∥∥∥ = max

1≤i≤n

∥∥∥∥∥
S∑
s=1

ŵsΠs

(
β̂

(yi−1)
(s) − β̂(s)

)∥∥∥∥∥
≤ max

1≤i≤n
max
1≤s≤S

∥∥∥β̂(yi−1)
(s) − β̂(s)

∥∥∥
= OP

(
p1/2n−1

)
. (A.24)

Furthermore, under Conditions 6-7, we have

max
1≤i≤n

|xT
i β̂(ŵ)| ≤ max

1≤i≤n

∣∣∣∣∣
S∑
s=1

ŵsx
T
i

(
β̂s − β∗s

)∣∣∣∣∣+ max
1≤i≤n

∣∣∣∣∣
S∑
s=1

ŵsx
T
i β
∗
s

∣∣∣∣∣
≤ max

1≤i≤n
max
1≤s≤S

‖xi‖
∥∥∥β̂s − β∗s∥∥∥+ max

1≤i≤n
max
1≤s≤S

|xT
i β
∗
s|

= OP (S1/2pn−1/2) + C6

= C6 + oP (1). (A.25)

Let β̂(ŵ) =
∑S

s=1 ŵsΠsβ̂(s), where ŵ minimizes C(w). Combining with (A.22) and using Taylor
expansion, when n is large enough we have

C(ŵ)− C(wo
s0

)

= p

[
− 1
√
pn

n∑
i=1

εix
T
i

√
n

p

{
β̂(ŵ)− βtrue

}
+

1

2

√
n

p

{
β̂(ŵ)− βtrue

}T

In(β̃)

√
n

p

{
β̂(ŵ)− βtrue

}
−

n∑
i=1

(
1
√
pn
yix

T
i

)
n
√
p

{
β̂(ŵ)(yi−1) − β̂(ŵ)

}]
− pηn

= p

[
− 1
√
pn

n∑
i=1

εix
T
i ν +

1

2
νTIn(β̃)ν

−
n∑
i=1

(
1
√
pn
yix

T
i

)
n
√
p

{
β̂(ŵ)(yi−1) − β̂(ŵ)

}]
− pηn
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≥ p

[
1

2
{c0 exp(−C6) + oP (1)}‖ν‖2 −

∥∥∥∥∥ 1
√
pn

n∑
i=1

εix
T
i

∥∥∥∥∥ ‖ν‖
−

∥∥∥∥∥ 1
√
pn

n∑
i=1

yix
T
i

∥∥∥∥∥ n
√
p

max
1≤i≤n

∥∥∥β̂(ŵ)(yi−1) − β̂(ŵ)
∥∥∥− |ηn|]

= p
[
2−1{c0 exp(−C6) + oP (1)}‖ν‖2 − ‖ν‖OP (1)−OP (1)−OP (1)

]
, (A.26)

where ν =
√
n{β̂(ŵ)− βtrue}/

√
p, and β̃ lies between β̂(ŵ) and βtrue. The last inequality is due to

λmin{In(β̃)} = λmin

{
1

n

n∑
i=1

exp(xT
i β̃)xix

T
i

}

≥ min
1≤i≤n

inf
t∈(0,1)

exp
{
txT

i β̂(ŵ) + (1− t)xT
i βtrue

}
λmin

(
1

n

n∑
i=1

xix
T
i

)

≥ exp

{
− max

1≤i≤n
sup
t∈(0,1)

t|xT
i β̂(ŵ)|+ (1− t)|xT

i βtrue|

}
c0

≥ c0 exp{−C6 + oP (1)}

= c0 exp(−C6) + oP (1), (A.27)

where max
{

max1≤i≤n |xT
i β̂(ŵ)|,max1≤i≤n |xT

i βtrue|
}
≤ C6 + oP (1) according to (A.25) and Con-

dition 6, and the last equality is based on (A.23), (A.24) and Lemma 2.

According to the definition of ŵ, we see that Pr {C(ŵ)− C(wo
s) ≥ 0} = 0. This means that

the probability of the right-hand side of (A.26) being nonnegative is also zero. Thus, ‖ν‖ must be
bounded in probability. Therefore, we conclude that∥∥∥β̂(ŵ)− βtrue

∥∥∥ = OP (p1/2n−1/2).

This completes the proof.

11



A.4 Additional empirical results

Table A.1: Definition of covariates
Pilot CEO A dummy variable that equals 1 for CEOs with a pilot license and zero otherwise

Log(Assets) The logarithm of total assets in millions

Log(PPE/EMP) The logarithm of the ratio of net property, plant, and equipment over the number of employees

Stock return Firm buy-and-hold return over the fiscal year

Tobin’s q The market value of assets divided by the book value of assets

Inst. holdings Percentage of shares held by financial institutions

Tenure The CEO tenure in months

Delta The dollar change in CEO stock and option portfolio for a 1% change in stock price

Vega The dollar change in CEO option holdings for a 1% change in stock return volatility

Log(CEO age) The logarithm of CEO age in years.

Top university

A dummy variable that equals one if the CEOs undergraduate institution is listed as one of

the top 50 schools ranked by U.S. News & World Report in any year during the period 1983

through 2007 and zero otherwise

Finance education
A dummy variable that equals one if the CEO received a degree in accounting, finance, busi-

ness (including MBA), or economics and zero otherwise

Technical education

A dummy variable that equals one for CEOs with undergraduate or graduate degrees in en-

gineering, physics, operations research, chemistry, mathematics, biology, pharmacy, or other

applied science and zero otherwise

PhD in technical edu.
A dummy variable that equals one for CEOs with a PhD in engineering, technology, science,

or mathematics and zero otherwise

No school info.
A dummy variable that equals one if we cannot identify the CEOs undergraduate school and

zero otherwise.

Military A dummy variable that equals one for CEOs with military background and zero otherwise

Overconfidence
A dummy variable that equals one for all years after the CEOs options exceed 67% money-

ness and zero otherwise

12



Table A.2: Descriptive statistics of the outcome variable and covariates

Mean Std Max Min

R&D 5.504 10.739 50.000 0.000

Pilot CEO 0.085 0.279 1.000 0.000

log(Assets) 6.808 1.459 12.048 1.233

log(PPE/EMP) 2.385 73.202 5316.6 0.023

Stock return 3.828 1.323 9.491 −1.292

Tobin’s q 2.169 2.503 78.565 0.404

Inst. holdings 0.442 0.319 1.331 0.000

log(1+Tenure) 3.507 0.762 4.970 0.000

log(1+Delta) 4.537 1.993 11.267 0.000

log(1+Vega) 3.450 1.639 9.192 0.000

log(CEO age) 3.971 0.135 4.382 3.367

Top university 0.143 0.350 1.000 0.000

Finance education 0.001 0.039 1.000 0.000

Technical education 0.014 0.118 1.000 0.000

PhD in technical edu. 0.093 0.290 1.000 0.000

No school info. 0.315 0.464 1.000 0.000

Military 0.021 0.851 1.000 0.000

Overconfidence 0.626 0.484 1.000 0.000
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Table A.3: Coefficient estimates of innovation regression with different sets of covariates

Full model Model (1) Model (2) Model (3) Model (4)

Coef. p-val. Coef. p-val. Coef. p-val. Coef. p-val. Coef. p-val.

Pilot CEO 0.204 0.017 0.219 0.000 0.193 0.000 0.214 0.000 0.218 0.000

log(assets) 0.027 0.236 0.055 0.000

log(PPE/EMP) 0.069 0.000

Stock return −0.0004 0.355

Tobin’s Q 0.041 0.006

Inst. holdings 0.180 0.033

log(1+tenure) −0.050 0.158

log(1+delta) 0.015 0.427

log(1+vega) 0.014 0.580

log(CEO age) 0.536 0.017 0.409 0.000

Top university 0.176 0.012 0.218 0.000

Finance education −2.14 0.001 −2.093 0.000

Technical education 0.212 0.165 0.269 0.000

PhD in tech. edu −0.065 0.465 −0.074 0.000

No school info 0.064 0.296 0.013 0.315

Military −0.134 0.402 −0.129 0.045 −0.122 0.038

Overconfidence 0.017 0.774 0.041 0.001 0.0399 0.000

constant −1.071 0.221 0.000 0.998 1.309 0.000 1.686 0.000 1.660 0.000

Notes:All models are estimated using standard Poisson regressions.
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Table A.4: The pre-screening procedures for empirical application

Screening 1

Step 1: Compute the absolute value of the bivariate correlation

between each covariate and the outcome variable.

Step 2: The first candidate model only includes pilot CEO and

the intercept.

Step 3: The second candidate model contains pilot CEO and the

intercept, as well as an additional covariate with the largest abso-

lute value of the bivariate correlation.

Step 4: Continue Step 3 by adding one extra covariate at each time

based on their bivariate correlations to construct the remaining

candidate models, until all covariates are included.

Screening 2

Step 1: Compute the absolute value of the bivariate correlation

between each covariate and the outcome variable.

Step 2: The first candidate model includes the intercept and a co-

variate with the largest absolute value of the bivariate correlation.

Step 3: Continue to add one extra covariate at each time based on

their bivariate correlations to construct the remaining candidate

models, until all covariates are included.
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