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Abstract: This article studies optimal model averaging for partidiyear models with het-

eroscedasticity. A Mallows-type criterion is proposed ltoase the weight. The resulting model
averaging estimator is proved to be asymptotically optiomader some regularity conditions.
Simulation experiments show that the proposed model aeyagethod is superior to other com-
monly used model selection and averaging methods. The gedpoarocedure is further applied

to study Japan’s sovereign credit default swap spreads.
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1. Introduction

Linear regression models have been predominantly popukawvariety of applications,
including biology, economics, psychology, and machinelga. One important reason may
be its simplicity and the clear interpretation of the estioraresults. However, an increasing

number of studies have noted that the relationship betwezresponse variable and covari-

ates is not always linear. To list a few examples, Barro (1 99énd that democracy can in-

fluence economic development in a nonlinear pattern. H .(2012) and Su & | u

2013) found a nonlinear effect of initial state on the eaqoitogrowth rate.| Liang et
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2007), in a study on the effectiveness of antiretroviratii@es, showed that the HIV vi-

ral load depends nonlinearly on treatment time. Ignoringlinearity can result in incorrect
estimates and inferences, further resulting in misleadikpanations and bad decisions. For
example, ignoring the nonlinear effect of global stock netslon the local market may lead
to a lack of awareness of financial contagion; Simply esiimgad linear relationship between
inflation and economic growth may lead to inappropriate fitftatargeting policies.

To avoid potential ignorance of nonlinearity, partiallpéar models (PLMs) have re-
ceived extensive attention in theoretical and appliedssied due to their flexible specifica-
tion. It allows for both linear and nonparametric relatidoetween covariates and the re-
sponse variable. This type of specification is also fregyersed when the primary interest
is in the linear component, whereas the relation betweemikgn response and additional
covariates is not easily parameterized. The superiorith@partially linear model over the
standard linear models is that it does not require the paranassumption for all covariates
and allows us to capture potential nonlinear effects. Troslehis sometimes preferred over
the fully nonparametric models since it preserves the adgas of linear models, e.g., an

easy interpretation of the linear covariates, and suffgless from the dimensionality curse.

PLMs are used in a wide range of applications in the litemtsee, for example, Engle et al.

1986) for an economic application and Liang etlal. (2007 gfanedical application.

Various methods have been proposed to estimate PLMs, fon@rasmoothing splines

Eng\ﬁ_el_a\ 19 'Heckan_L‘)SG), kernel smoothing_ﬁ&njh 1988; Speckman, 1988),

local polynomial estimation (Hamilton & Truong, 1997), geehalized splines (Ruppert et al.,

2003). See Hardle etlal. (2000) for a comprehensive survbgse estimation methods are

all based on the assumption that a correctly specified medgVéen. In practice, however,



OPTIMAL MODEL AVERAGING ESTIMATION FOR PARTIALLY LINEAR MODELS

researchers are ignorant of the true model. One needs tdedetiich covariates are in the
model (covariate uncertainty), and further whether togasai covariate in the linear or non-
parametric component given that it is in the model (striecturcertainty). The specification
of covariates and the model structure is of fundamental napge as it greatly influences
the estimation and prediction results. These two types oéuainty are generally referred
to as model uncertainty.

Typical methods to address model uncertainty involverigstind/or selecting the best
model using data-driven approaches. The most popular metlay be to use an information

criterion (IC), such as the Akaike information criterionl@ or Bayesian information crite-

rion (BIC). To decide which variables to include in the PLIK 2009), Bunea (2004),

and Xie & Huang|(2009), among others, have proposed sevarable selection methods.

To further determine the structure of the model (which ciates to include in the (non)linear
function), a commonly used method is to test the linear ngidtheses against nonlinear al-

ternatives for each covariate. Such tests, however, ofti@a low power when the number

of covariates is large (Zhang et al., 2011). In additionséhtesting and selection methods

perform model selection and estimation in two separatessté&hus the uncertainty in the

model selection procedure is ignored in the estimation, stegking it difficult to study the

properties of the final estimator (Danilov & Maghus, 2004; [, 2016). Zhang et al.

2011) provided a model selection approach based on snmgothpiine ANOVA to automat-

ically and consistently distinguish linear and nonlineamponent. This method is useful
if the goal is to identify the correct model structure, buthé research purpose is to esti-
mate the parameters or to make predictions, it seems mausipla to take into account all

(potentially) useful models. However, the model selectipproaches can be rather “risky”
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since they require “putting all our inferential eggs in omevenly woven basket!’ (Longfard,

2005).

In this paper we follow a different approach. Instead of slizdg one model, we address

model uncertainty by appropriately averaging the estisfitem different models. As an

alternative to model selection, model averaging can sobatly reduce riskl(Hansen, 2014).

It is an integrated process that accounts for both the mausgntainty and estimation un-

certainty. Model averaging has long been a popular appreé&bim the Bayesian paradigm;

see, for example, Hoeting et al. (1999) for a comprehensiiew. In recent years, optimal

model averaging methods have been actively developeda$tarice, Mallows model aver-

aging (Hansen, 2007), OPT method (Liang etlal., 2011), jaidkknodel averaging (JMA)

Hansen & Racine, 2012), heteroskedasticity-robust magetaging|(Liu & Okui, 2013),

optimal averaging method for linear mixed-effects mo ,2014), and optimal

averaging quantile estimatars Lu & Su (2015). These methoglasymptotically optimal in

the sense that they minimize the predictive squared errtiraarge sample case, but they
mainly focus on the linear models. To the best of our knowdgdgere are no optimal model
averaging estimators for PLMs. The main purpose of this pisde fill this gap.

Our model averaging approach can simultaneously incotpdne covariate and struc-
ture uncertainty in PLMs, which is not much studied in the Pliterature. Heteroscedastic
random errors are also allowed. To show the optimality ofraethod, we first assume that
the covariance matrix of errors is known, and propose a Maltype weight choice crite-
rion, which is an unbiased estimator of the expected priedisjuared error up to a constant.
We prove that the weights obtained by minimizing this crierare asymptotically optimal

under some regularity conditions. Next, we replace the ankncovariance matrix with its
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estimated counterpart, and show that the plugged-in mitestill leads to asymptotically
optimal weights.

One may naturally formulate this study as an extension eflirregression model av-
eraging. However, we emphasize that such an extension is byeans straightforward and
routine because the existing methods, such as Mallows naeehging, typically do not
involve kernel smoothing. To the best of our knowledge, oarkns the first to study the op-
timal averaging that involves kernels. One of our main tézddrcontributions is to provide

an optimal weight choice in a kernel smoothing framework.

Our work is also related to Xu et BL. (2014), which considdreduentist model averag-

ing and post-model-selection inference in an additiveiglriinear model. Under the local
misspecification setup, their averaging estimator is @ast butmay not beoptimal. We

differ from this study by relaxing the local misspecificati@ssumption, thereby allowing all
candidate models to be possibly misspecified, and we stdggtimal averaging estimator.

Moreover, they focus on parameter estimation, while wergezésted in prediction. Another

related work is Zhao et al. (2016), which modeled massiverbgeneous data in a partially

linear framework. To estimate the commonality paramekay fproposed to average com-
monality estimators obtained from heterogeneous sublptipns. While the averaging idea
is similar, our candidate estimators are obtained from #meessample but different models,
whereas theirs are from the same model but different sulbHptipns.

We compare the proposed model averaging estimator withlapmodel selection and
averaging estimators for PLMs. Our simulation study comsidwo cases. In the first case,
only the linear component is uncertain, and the candidateéetsadiffer in their inclusion

of linear variables. In addition to linear component uraiaty, the second case considers
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the situation where there is also uncertainty in choosinglvbovariates to include in the
(non)linear function. In both cases, the proposed estimadoforms best in most of the
cases, especially whet? is moderate and low. Only wheR? is particularly high, our model
averaging estimator is not as good as information-criteiased methods in the second case.
We also apply our method to study Japan’s sovereign cretititteswap spreads. We find
that allowing for nonlinearity indeed provides several nesights. For example, the effect of
the global stock market performance on the local marketésngthened in the volatile period,
suggesting the existence of financial contagion. The owtaaiple prediction exercise further
illustrates the advantage of partially linear models oherlinear models, and we generally
find better prediction performance for our estimator coragdo other partially linear model
estimators.

The remainder of this paper is organized as follows. Seiamroduces our model
averaging estimator and presents its asymptotic optiynefiection 3 investigates the finite
sample performance of the proposed estimator. A real dampbe is studied in Section 4
and Section 5 provides some concluding remarks. Technicalff, additional simulation
results and additional tables and figure for the real datanpl@can be found in our online
supplement.

2. Model averaging estimation
2.1. Model and estimators

We consider the partially linear model (PLM)

yi= Y i +9(Zi) +e, i=1...n, 2.1)
j=1

whereX; = (z;1,z;2,...) is a countably infinite random vectdZ; = (z;,. .. ,ziq)T is a
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random vector in some bounded dom&c RY, g(-) is an unknown function fronk” to R!,
andey, ..., €, are heteroscedastic random errors with; X;, Z;) = 0 and Ee§|XZ-, Z;) =
al?. We denote the expectation of the response variahle ask(y;|X;, Z;) = Zj‘;l x5 85+
9(Z;).

Our goal is to estimatg;, which is of particular use for prediction, and this is alke t
typical goal in the optimal model averaging literature (ektansen, 2007; Lu and Su, 2015).
For this purpose, we usg, candidate PLMs to approximate (2.1), whegis allowed to

diverge to infinity as: — oo. Thes™ approximation (or candidate) PLM is

yi = X8 + 9)(Ze)i) + b+, i=1...,n (2.2)

where X, ; is a vector in the linear componeri, ) ; is a vector in the nonparametric
componentg,(-) is an unknown function fronR% to R!, andbyy ; = pi — Xa)viﬁ(s) —
9(s)(Z(s),;) represents the approximation error in tifemodel. Here, the linear compo-
nentX, ; is allowed to contain variables i;, and reversely the nonparametric covariate
Z(,),; could contain variables iiX;. Hence,[(ZR) permits two sources of uncertainty: the
uncertainty of which variables to include in the model anel gimcertainty of whether a co-
variate should be in the linear or nonparametric componieahghat it is in the model, i.e.,
the variables in the two components may mutually exchange, r example, the second
case in Section 3. Le&X(y) = (X(5)1,---, X(5)n) s Z(s) = (Zs)ya--- Lsyn) " 8(s) =
{9Z) 1), 9(Ziy )} e = (a1, )Ty = (Y1, un) T andp = (pa, -y i) T
Remark 1. Since estimating the coefficients of the linear componedthe non-parametric

component isotthe purpose of this paper, we do not need the conditions fusistency or

asymptotic normality of the coefficient estimates, for epanthe conditions in Section 1.3
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ofHardle et al.|(2000).

To provide an optimal weighting scheme, we first need to egraach candidate model.

We follow [Speckman (1988) and use kernel smoothing estimatDne of the advantages

of this method is its light computational burden, which isi@al in our case since the

number of candidate models is typically substantial. TordeSpeckman’s (1988) estima-

tor, let k(-) be a kernel functionhs be a bandwidth, and;,_(-) = k(-/hs)/hs. Further-
more, denotéK ) = {K(,);;} as ann x n smoother matrix WithK,) ;; = kn_ (Zs); —
Zs) )/ 25— kn(Zs)i — Zs),45-). The kernel smoothing estimator g{,, andg,) can
then be obtained b, = (X[, X(,)) !XT, (I, — K(y))y andg(,) = Ko (y — X(5)B(s),
wheref((s) = (I, — K(4))X(,) andI, is ann x n identity matrix. The estimator of.

~

is thenfiy = X(,B) + s = X(S)(X(TS)X(S))—li(TS) (I, — Ky + Ky, Let-
ting 13(3) = f((s)(f(a)ﬁ(s))*lﬁa) andP,) = ﬁ(s)(ln - K(y)) + K(;), we can write
ﬁ(s) = P(,)y. Note that because of the curse of dimensionafitythe dimension o))
cannot be large.

With the estimators of each model readily available, we da#aio the model averaging
estimator ofu by fi(w) = 325", wefi(y = P(w)y, wherew = (wy,...,ws,)" is the
weight vector belonging to the s&v = {w < [0,1]°" : Zf;lws = 1} andP(w) =
Yo wsP ).

Remark 2. We point out that although heteroscedasticity is alloweth@éndata generating
process[(2]1), we do not immediately take it into accountrwestimating each candidate

model (using kernel smoothing). Instead, we incorporaterbscedasticity when estimating

the unknown variance-covariance matrix (for the weighinestion). This is a typical treat-

ment in the literature on model averaging under heterostietty, such as Hansen & Racine
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2012), Liu & Okui (2013), and Zhang etlal. (2015). The maias@n is that an estimator

that incorporates heteroscedasticity for each candidatdeiris not necessarily more effi-
cient than an estimator that fails to do so, and the lattenisputationally much simpler and
faster.

2.2. Weight choice criterion and asymptotic optimality

Define the predictive squared logs(w) = ||zi(w) — u||? and expected loss
Rn(w) = E{Ly(w)} = |P(W)p — p||* + trace{P(w)QP" (w)}, (2.3)

whereQ2 = diag(o?, ..., 02). To select the optimal weights in the sense of minimizing

rvn

we propose to minimize the following Mallows-type critario
Cr(w) = ||fi(w) — y]|* + 2trace{P(w)Q}, (2.4)

as we can show thak,,(w) = E{C,(w)} — trac&), where trac&?) is unrelated tow.

Therefore, if we knov2, the weights can be obtained as
W = argmin, ¢y, Cr,(w). (2.5)

Averaging using this weight choice is called Mallows avémggf partially linear models
(MAPLM). The optimality of such a weight choice holds undems regularity conditions.
Define¢,, = infweyy R, (w) andw? as a weight vector with the” element taking on the
value of unity and other elements zeros (model selectiogltei Letmiax indicate maxi-
mization overi € {1,...,n}, where all limiting properties here and throughout the teet

undern — oo.

Condition 1 max ) 7, [K(s) ;| = O(1) andmax >, [K() ;| = O(1) uniformly for
1 J

se{l,...,S,}, almost surely.
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Condition 2 For some intege€ > 1, max E(¢1C|X;, Z;) < oo andS,£,26 2% (R, (w?)}¢ —
7

0 almost surely.

Condition[] is the same as assumption (i) of Speckman (189@&kh bounds the kernel.

Condition(2 requires,, — oo, i.e., there is no finite approximating model whose bias is ze

Hansen & Racine, 2012 and Liu & Okui, 2013). This condititéoaconstrains the rates of

S, and R,,(w?) going to the infinity, and is widely used in other model avénggtudies;

see, for examplé, Wan etial. (2010), Liu & Okui (2013), and A&dLi!(2014).
Theorem1 Under Condition§1[32, we have that as— oo,

L,(w)/ in‘f/v L, (w) — 1in probability. (2.6)

we

Theorent]l shows that the model averaging procedure wgirsgasymptotically optimal in
the sense that the resulting squared loss is asymptoticalhtical to that of the infeasible
best possible model averaging estimator. The proof of Témafl (see the online supple-
ment) takes advantage of several inequalities involvingéds, and it provides a technical
innovation for studying the optimal model averaging in anletismoothing framework.

So far we have assumed that the covariance m&trig known. This is not the case in
practice, and the criteriof_(2.4) is therefore computatilyrinfeasible. To obtain a feasible
criterion, we estimat&€2 based on the residues from the largest model indexes*by:

arg maxsE{l,...,Sn}(ps + QS)’ thatis

Qe = diagé ..., % ), (2.7)

)y -s*n

where(€s- 1,. .., €5 n)t =y — ﬁ(s*) =y — P(,)y. The idea of using the largest model to

estimate the variance parameter or covariance matrixgsaalgocated by Hansen (2007) and
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Liu & Okuil (2013). We distinguish between two cases herestFif the candidate models

have the same nonparametric component but only differ imnitlasion of linear covariates,
the largest model is unambiguously the one with all lineataciates included. In the more
general case with uncertainty in both linear and nonpand@mponents, the model with
the largest dimension is not uniquely defined since the nsodith the same dimension can
differ in the structure of linear and nonparametric compuseTherefore, we propose to use
the the largestinear model to estimaté&? in this case. Although the largest linear model
is nested in the largest nonlinear model, including a langmlver of covariates in the non-
linear component leads to a highly inaccurate estimateisfabmponent due to the curse
of dimensionality. The inaccurate estimate further resuta poor estimator of error vari-
ance. Moreover, in most applications, the dimension of trdinear component is typically
low; see, for example, Yatchew and No (2001) and Liang (208&nce, the estimated error
variance obtained from the largest linear model is a goodaqapate in practice. Never-
theless, we point out that when the total number of covariatearticularly small, such that
the largest nonlinear model is of low dimension, it might makore sense to use the largest
nonlinear model to estimate the error variance.

By replacing$2 with its estimatoif, the feasible criterion becomes
Cu(w) = [|A(w) = y||* + 2trace{ P(w) Q.- }, (2.8)
and the weights can be obtained by

< _ —— . 2.
w argvrvrgvan(w) (2.9)

LetH = (fiy) — ¥,...,Fi(s,) — y) andb = {tracdP;Q(,.), ..., tracP s, ) Q(s-))} T

We can rewriteC,,(w) asC,(w) = wTHTHw + 2w b, which is a quadratic function of
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w, and the optimization can be done by standard software paskauch as quadprog in
Matlab, which are generally effective and efficient even whg is large.

We now show that the weights obtained by minimizing the talastriterion [2.8) are
still asymptotically optimal. Denotpgf) as thei" diagonal element oP ). Let m;ix(mgn)

represent maximization(minimization) ovee {1,...,S,}, p = maxps, andh = min hs.
S S

Assume the following conditions hold almost surely.
Condition 3 [|u]|? = O(n).
Condition 4 trace(K ) = O(h~!) uniformly fors € {1,...,5,}.

Condition 5 There exists a constamt such that|p§f)| < cn—1|trace(P(8))| for all s €

{1,....8,}.
Condition 6 n~'h=2 = O(1) andn~1p? = O(1).

Condition[3 concerns the sum afelements ofu and is commonly used in linear re-

gression models; see, for example, Wan et al. (2010) andyleaal. (2011). Conditiohl4

is a natural extension of Condition (h)lof Speckman (1988)ndition[3 is commonly used

to ensure the asymptotic optimality of cross-validatioee,sfor example, Andrews (1991)

and Hansen & Racine (2012). The first part of Condifibn 6 régéne bandwidth and is less

restrictive than thes~'h=2 = o(1) required in Theorem 2 of Speckman (1988). The sec-

ond part of Conditioh]6, which is the same as Condition (1 .1(2010), allows

ps'S to increase as — oo, but restricts their increasing rates. Further explanataf these

conditions are provided in the online supplement.
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Theorem?2 Under Condition§1136, we have that as— oo,

L,(w)/ ingv L, (w) — 1in probability. (2.10)
we

The proof of Theoreml2 is provided in the online supplement.

Remark 3. The question of how to choose the optimal bandwidtin each candidate model
remains. While this question is of interest, it is espegidifficult in our case because each
candidate model is just an approximation of the true moddltarrefore includes approx-
imation error. In our numerical examples, the bandwiklthis chosen by minimizing the
generalized cross-validation criterion. As an alterregtive also consider bandwidth selec-
tion using cross-validation, a popular criterion in thegamece of heteroscedasticity. The
simulation results show that the two criteria lead to alndshtical relative performance of
their competing methods, but cross-validation is companatly much more expensive than
generalized cross-validation.

Remark 4. Theoreni R holds no matt€l is estimated by the largest partially linear model (in
the case with only linear component uncertainty) or thedatgjnear model (in the case with
structure uncertainty), as long as the number of covariatideed. An alternative strategy to
estimatef2 is based on thaveragedesiduals(w) = {€1(w),...,6,(w)}T =y — fi(w).
The motivation of this strategy is to avoid placing too mucmfidence in a single model.
The use of the averaged residuals does not affect the yatifiTheoren{2 and produces
similar numerical results. Detailed results of this altgive estimation strategy and proofs
of this remark are available upon request.

3. Simulation study

3.1. Data generation process
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Our setting is similar to the infinite-order regression bwnkkan [(2007) except that we

have a nonlinear function in addition to the linear compan&pecifically, we generate the

data byy; = p; + ¢ = 2?0201 i+ 9(Zi) + e, whereX; = {z;1,...,x500} " is drawn
from a multivariate normal distribution with mean 0 and cgaace0.51 72| betweenr;;,
andz;;,. The corresponding coefficients are setdas= 1/j. For simplicity, we consider

a nonlinear function of tweorrelatedvariables, i.e.g(Z;) = g(z1, zi2), and we generate
zi1 = 0.3u1 +0.7us andz;s = 0.7uq +0.3us Whereu; andus are independent and uniformly
distributed. Two variants of nonlinear functions are stadig (Z;) = exp(z;1) + 25 and
92(Z;) = 2(z;1 — 0.5)3 +sin(z;2). The errors are normally distributed and heteroscedastic a
ei ~ N(0,7%2%,). We change the value @f so thatR? = var(uy, ..., tn) /Var(y, ..., Yn)
varies from0.1 to 0.9, where vaf-) denotes the sample variance. Since all covariates are
correlated with each otheR? cannot be easily written as a function @f We therefore
numericallycomputeR? based on each chosgnThe sample size is set to= 50, 100, and
200, and the results af = 400 are given in Section S.3 of the online supplement.

In real applications, the model is typically a simplified sien of the data generating
process with a number of variables omitted, either becatiggorance or because of data
limitations. To mimic this situation, we omit;; and some components &; for every
candidate model. We consider two cases with different tgpesodel uncertainty. In the first
case, it is a priori which variables belong to the nonparamebmponent (based on existing
theory or the research question of interest), but the spatiin of the linear component is
uncertain. In this case, all candidate models share a cormmoparametric function of;;

(with z;» being omitted), and their linear components are a subsgt®f. .., z;5}7 (with

the remaininge;;’s being omitted). We require each candidate model to irektdeast one
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linear covariate, leading & — 1 = 31 candidate models.

In the second case, there is no a priori knowledge about wtoetariates should be
chosen as parametric regressors and which belong to theremptric component. There-
fore, in addition to the uncertainty of which variables tolirde, we are also uncertain about
whether a covariate should be included in the linear or n@mpatric component. As the
number of covariates increases, the number of candidatelsmodw increases even more
dramatically than in the first case. To facilitate the comafioh, we assume that only four
covariatesx;1, x;2, T3, z;1) are observed, whereas the others are omitted. In contrtiss to
first case, the candidate models here allow a subsetofr;o, ©;3, z;1) in the nonparametric
function, and the remaining can be included in the linearpoment or not in the model at
all. Again, we require each candidate model to contain &t leae linear and one nonpara-
metric covariate. This leads 3) (2% — 1) + (3)(22 — 1) + (}) = 50 candidate models.
More simulation designs, such as a diverging number of cktelimodels, data with a larger
degree of nonlinearity and autoregressive errors, arepted in the supplement. The results
are essentially the same.

3.2. Estimation and comparison

We estimate each candidate model using the quadric kefngk= 15/16(1—v%)%1(jv] <
1), whereI(-) is an indicator function. In the first case with only lineamgmonent uncer-
tainty, the covariance matri® is estimated using the largest candidate model, i.e., the pa
tially linear model containing all observable linear caa#gs, and in the second case it is
estimated from the largeBhear model (with all observable variables included linearly and
no nonparametric component). We mainly compare MAPLM withrfalternative estima-

tion methods for PLMs including two selection methods amolé&weraging methods. The two
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model selection methods are based on AIC and BIC, and thegtshke model with the small-
est information criterion, defined respectively, as AIE log(c?) + 2n—1trace(P(S)) and

BIC, = log(52)+n~'traceP,)) log(n), wheres? = n~!|ly — iy ||>. The two model aver-

aging methods are smoothed AIC (SAIC) and smoothed BIC ($ klan 1, 1997).

The weight of modek is constructed byuf‘lc = exp(—AICS/2)/Zf:1 exp(—AIC;/2)
andwB!C = exp(—BIC,/2)/ 2%, exp(~BIC,/2).

To evaluate these methods, we compute the mean squaredMB&) of the predic-
tive variable a$00~ >-°% || — u||2, where500 is the number of replications anél"”
denotes the estimator ¢f in the »" replication. For convenient comparison, all MSEs are
normalized by dividing by the MSE produced by AIC model sgtet
3.3. Results

We first describe some general observations from the resmitsthen discuss each case
in detail. In general, the model averaging methods outperfbe selection methods. The su-
periority of the averaging methods is particularly obvietreenR? is small. AsR? increases,
the difference between model selection and averaging dsese The performance of the av-
eraging methods wheR? is small and moderate is especially good because iderdifyia
best model is difficult in the presence of substantial ndis¢éhat case, the model chosen by a

selection procedure can be far from ideal, which unsumglgileads to inaccurate estimates.

By contrast, model averaging does not rely on a single maakitlaus provides protection

against choosing a poor model. This observation is alsa@wiith Yuan & Yangl(2005) and

Zhan ..(2012). WheR? is large, model selection is sometimes preferred becaase th

minimal noise in the data allows the selection criterionhoase the correct model.

Figure[1 presents the results when there is uncertainty iy the linear component
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specification. Our method yields the smallest MSE in almbstases, but the information-
criterion model averaging sometimes has a marginal adgant@ieni? is very large. Most
of the figures show that the advantage of our method increzsRB$ decreases. The good
performance of MAPLM is partly because the optimality of MAW® does not rely on the
correct specification of candidate models. The compari§timeomethods for different sam-
ple sizes shows that when we have a relatively small or meelseample sizen( = 50 and
100), MAPLM outperforms all the competing methods over the weh@nge ofR?. When
the sample size is relatively large & 200), MAPLM still dominates the other methods for
a wide range of??, but the difference between MAPLM and SAIC decreases. e radse
that all the methods perform almost equally well when thegarsize is large ané&? is 0.9.
Further examination suggests that the methods tend tat selgepose a large weight on the
same model when there is little noise in the model and the esige is large. This similarity
can be partly explained by the fact that the bias-variaremetff is not so significant in this
situation, so model selection is able to choose the correde

Figure[2 compares the estimation results when there iststeuancertainty in addition
to uncertainty in covariate inclusion. In this case, batledir and nonparametric components
vary over the candidate models. MAPLM produces much loweEMSan its rivals in all
cases wherk? is equal to or less than 0.7, which again demonstrates thatodel averaging
approach is preferred when the model is characterized bstauiial noise and identifying
the best model is difficult, as in most practical applicasioriThe poorer performance of
MAPLM under particularly large?? is mainly a result of allowing for far more uncertainty
than necessary in this case, which prevents MAPLM from agsipa very large weight to

the best model. Specifically, on one hand, allowing for mareeutainty (in both the linear
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and nonlinear components) than in the first case causes MARL&Merage over a larger

model space, which generates a larger number of weight gdeasrto estimate. On the other

hand, when the data are highly informative (with laig®, there often exists a best model,

and IC are capable of selecting this model. By contrast, kémeously estimating a large

number of weights clearly prevents MAPLM from assigning ayarge weight to the best

model, resulting in the poorer performance of MAPLM in thése.

Figure 1. Mean square error comparison: Uncertainty ontaénlinear component
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Moreover, model selection and averaging using AIC and SAktilto largely similar
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results, as do BIC versus SBIC. These results indicate fieae tis a dominant model that
significantly outperforms the others, and this dominant ehégloften the one with the most
covariates in the nonparametric component. This furthggssts that IC tend to select the
most general model whenever possible, because nonpai@estimation typically fits better
than least squares estimation. However, the dominant ni®det necessarily the best in all
cases. When the data are characterized by substantial moiseye nonparametric model
mainly fits the noise; thus, the IC-based methods performhmarse than MAPLM. When
the data are highly informative, i.eR? = 0.9, the dominant model coincides with the best

model, leading to the better performance of the IC-basetiogstthan MAPLM.

Figure 2: Mean square error comparison: Uncertainty in bothponents
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To see how much harm can be caused by ignoring nonlinearéyalgo compare our
method with linear model averaging (LMA) that considerscalhdidate models to be fully
linear. Theoretically, LMA should work better when the mbdelinear or the degree of
nonlinearity is small since nonparametric estimation esges much slower and is gener-
ally less efficient than least squares estimation. As theedegf nonlinearity increases, the
better fit achieved by nonparametric estimation domindgesfficiency loss and slow con-
vergence; thus MAPLM should outperform LMA under these étmals. Our simulation
results (presented in the supplement) under differentedsgof nonlinearity precisely con-
firm this theoretical argument. Moreover, we find that LMAgslily outperforms MAPLM
whenR? and the sample size are small. R%and the sample size increase, MAPLM quickly
demonstrates its significant superiority over LMA. Detdigmulation designs, results, and
explanations are provided in the online supplement.

4. Empirical application

We apply our method to study Japan’s sovereign credit desawdp (CDS) spreads. A
CDS contract is an insurance contract against the credittespecified in the contract. Its
spread is the insurance premium that the buyer under piartelcas to pay, and it reflects
investors’ expectations about a country’s sovereign tresi. The likelihood of default typ-
ically depends on the country’s willingness (rather thaititgppto repay, and the government
often makes the repayment decision based on a cost-benalffsemnusing the information
of the country’s macroeconomic fundamentals. Japan'sre@eCDS spreads are of world-

wide interest since Japan has long been characterized lgitgjovernment debt. The ratio
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of gross government debt to GDP even reached 237.9% in 2B&2ighest in the world.
Furthermore, Japan is the world’s third largest economg, iemfinancial market plays an
important role in international finance. A crisis in Japanldalamage investors’ confidence
in the government debt of many other heavily indebted indalstountries.

In this section, we first examine how macroeconomic indicaedfect Japan’s CDS
spreads and then study the predictability of these indisat/e focus on the CDS contract
written on the credit event “complete restructuring”, whis the most popular credit event

insured by a sovereign CDS contract, and we consider theamimhaturity of five years,

following lLon ff .[(2011). Our potential macroeoaric determinants include three

domestic variables that reflect domestic economic perfoo@athe domestic stock market

return (measured by the Dow Jones Japan Total Stock MarkaitReturn Index), its volatil-

ity, and the nominal Yen-US Dollar exchange rate. We alstmfolon ff .(2011)

and consider three global-market determinants: the glstbak market return (measured by
the Morgan Stanley Capital International US Total Retudeh), US treasury yield (with the

constant maturity of five years), and the global default gekmium (approximated by US

investment-grade corporate bond spreads). See Longstd 1) and Qian et al. (2017)

for details of the variable construction. We focus on thetysasthquake sample from March
12, 2011 (one day after the Tohuku earthquake) to OctobeRQD? to avoid significant
structural breaks, and the number of observations is 38&1a are first-differenced based
on a preliminary unit root analysis and then normalized. Thange in Japan’s sovereign
CDS spreads (before normalization) is plotted in the lefighaf Figure S.6 of the online
supplement, and its sample autocorrelation function itgudoin the right panel. These two

plots show that the differenced series does not exhibingtserial correlation. Table S.1
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of the online supplement provides the descriptive statigif the first-differenced sovereign

CDS spreads and potential determinants.

4.1. Linear model specification

The existing literature on sovereign CDS spreads mosthsidens linear models in

which all the determinants are assumed to have a lineart@ffethe spreads; see, for exam-

ple, Longstaff et al[(2011) and Dieckmann & PI

k (2011). isveally follow this conven-

tion to estimate the effect of our six potential determisarding linear models. We consider

ordinary least squares (OLS) estimation and linear modwbaing using the heteroscedastic-

robust Mallows criterion (HR',). Linear model averaging treats all determinants lingaudy

it takes into account the uncertainty of whether a determiisaincluded in the model.

Table 1: Estimation results of linear models

OLS LMA OLS LMA
Domestic stock return —1.5182***  —1.2790*** | Domestic stock volatility 0.6165*** 0.0576
(0.1752) (0.3189) (0.1758) (0.7208)
Foreign exchange rate —0.3250* —0.3777*** | Global stock return 1.0107***  (0.9842***
(0.1727) (0.1839) (0.1733)  (0.2188)
US treasury yield —0.3672** —0.3649** | Global default risk premium —0.0774 —0.0230
(0.1750) (0.2349) (0.1689)  (0.0948)

Notes: Standard errors are in parentheses. ***, ** and * denotaificance at 1%, 5%, and 10%,

respectively. The significance of LMA is based on bootstrapfidence intervals with 200 random

samplings.

Table[1 presents the estimation results of the linear mo@itse all determinants are

normalized, the size of the coefficients reflects the reddtivportance. We first focus on the
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least squares estimation results. The least squares &istaow that the domestic stock
return, its volatility, and the global stock return are theee most important determinants
and have a significant effect on Japan’s CDS spread. Morefigpdly, the domestic stock
return, as a measure of local economic performance, hasragtmegative effect. The do-
mestic stock return can affect the CDS spread by influendiaggbvernment’s willingness
to implement fiscal reforms, and effective fiscal reform gitwlly regarded as an important
tool to reduce default risk. Therefore, when the domestimemy is weak, policy makers
are less willing to implement reforms because the reformsirtgose extra pressure on the
distressed economy. This failure to enact reforms thugassas the sovereign CDS spreads.
The strong and negative effect of domestic stock returmsliné with the literature (see, e.g.,
@., 2011 and Dieckmann & Plank, 2011). The dstinestock market volatility

is positively associated with sovereign CDS spreads, wisighline with the economic the-

ory that higher volatility indicates a less stable econostatus and thus a higher probability
of default. The other important determinant is the globatktreturn, which has a positive
effect on Japan’s sovereign CDS spread. Theoreticallyglibteal stock market return may
impose two opposite impacts on sovereign CDS spreads. Tatine effect is due to the fact
that good global economic performance can positively imfibgethe Japanese government’s
willingness to repay, thus lowering the sovereign CDS gjre@n the other hand, a good
global economy would also encourage investment in gendrateby increasing the CDS
spread. The overall impact of the global stock return depemdwhich effect is dominant.
It is likely that one effect is more prominent in some sitaat but dominated by the other
effect in other situations. This potential heterogenedigrmot be captured by linear models.

Less significant but still important determinants inclulde foreign exchange rate and
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US treasury yield. The negative effect of the foreign exgearate is expected because a low
Yen-US Dollar exchange rate reflects weakness in Japan'srdueconomic situation and
less external demand, which leads to higher sovereign CBadpThe negative relationship
between US treasury yield and Japan’s CDS spread is alstvathecause a high treasury
yield signals good economic performance in the US, whichpmsitively influence Japan’s
economy and encourage repayment by the Japanese government

We also compare the estimates obtained from least squatesadel averaging and find
that the signs of all the estimated coefficients are the samiedth methods. Nevertheless,
model averaging produces quite different estimates foresdaterminants, such as the do-
mestic stock return, its volatility, and the global defaigk premium, which suggests that
there is a large degree of model uncertainty.
4.2. Partially linear specification

Next, we examine whether the widely used linearity assumnps appropriate here. The
verification is based on both economic theory and statlgticds. First, from the theoretical
perspective, the literature of sovereign CDS spreads giyeloes not provide firm theory
about nonlinear effects for most covariates, except theedtimand global stock returns.
Qian et al. (2017) found that these two covariates play @fferoles in tranquil and turbulent
periods. Specifically, global stock returns are more premirduring turbulent periods, and
domestic stock returns are more prominent during tranagribpls. The nonlinear effect of
global stock returns is also supported by extensive lieeadn financial contagion, which

suggests that the link between domestic markets and thalgiodorket is often strengthened

during periods of crisis; see, elg. Eichengreen et al. )LQBJﬁa_e_e_\_al (2003). Therefore,

it is reasonable to consider the potential nonlinear effiéglobal stock returns.
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Next, we verify the linearity of each determinant by asgignit to the nonparamet-
ric component of partially linear models. We includeedeterminant in the nonparametric
component each time while keeping others in the linear covapb This process enables
us to verify whether each determinant has a nonlinear effeciapan’s CDS spreads and
also avoids the dimensionality and computational issuénadilsaneously considering many
nonparametric covariates. Figure S.7 of the online suppigrmpresents the nonparamet-
ric estimates of each determinant using the proposed MARIeM g(w) = Zf;l WsB(s)
whereg, is the nonparametric estimate obtained from each candidatiel andw =
(@, ...,ws,)" is weights estimated by MAPLM. We see that the effects of dstinetock
market volatility and global default risk premium do not éiha clear nonlinear pattern.
They either have a relatively flat curve or fluctuate arouna,zeuggesting that these ef-
fects are almost linear or highly insignificant. In contralstmestic stock returns, the foreign
exchange rate, global stock returns, and US treasury yiedd slifferent degrees of nonlin-
earity.

Finally, we formally test the linearity for each determihasing the test statistic sug-

gested by Li et al/ (2010). This test statistic verifies thik Imgpothesis of the linearity of the

nonparametric component by the fiducial method. Speciﬁi,iall_ej_il 2010) proposed to

first approximate the nonparametric component by a pieeelivisar function. Thus, testing

for linearity is transformed into testing for a linear réstion on the coefficient. The-value

of the test is then derived by the classic fiducial method, (8 & Lil(2006)). To validate

this test in our case, we implement the test infikedfull model, where only one determi-
nant is included in the nonparametric component each tirdegtaremaining determinants

are included in the linear component. Therefore, no avacai performed in this testing
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procedure. Although it appears to be more general to tedirtbarity of a covariate while

assigning others to the nonparametric component, it iscdlffin practice because a large
number of covariates in the nonparametric leads to the ttee@f dimensionality. The curse
results in poor estimates and unreliable test statistiémite samples. The-values of the

tests are reported in Talile 2. We see that the test failsetotréije null hypothesis of linearity
for the domestic stock return, its volatility, and globafaldt risk premium. The reported
p-values also confirm that the effects of the foreign exchaatgand global stock returns
cannot be accurately approximated by linear functions. tékestatistic for the US treasury
yield is not available because this variable takes only admsaerete values. Thus, it is less

clear whether one can assume a linear effect of the US tregisid.

Table 2: Linearity test for each determinant

p-value p-value

Domestic stock returns 0.1651 | Domestic stock volatility 0.4810
Foreign exchange rate 0.0265 | Global stock returns 0.0042

US treasury yield NA Global default risk premium 0.9548

Based on the nonparametric estimation results and thessigrediagnostics, we discuss
the (potentially) nonlinear determinants and their ecoieomplications. First, the estimated
effect of the foreign exchange rate has a steeply downwand tvhen the change in exchange
rates is below average, but the curve becomes relativelgiiciclose to zero as the change
in exchange rates increases. The negative relationshigbatthe exchange rate and Japan’s
CDS spread is in line with the findings of the linear modelsvéitheless, the nonparametric

estimate shows that this relationship becomes much weaken the exchange rate is high.
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Second, the estimated effect of global returns is chaiiaetkby a typical “U-shape”. We
see that the change in Japan’s CDS spreads is particulatywiien global returns are at
the extremes, either a large positive change or a large imegatange, suggesting that the
negative effect of global stock returns plays a more prontinele in a bear market while
the positive effect is more important when the global finahoiarket is in a bull market.
We also observe that the curve is much steeper when the gltizd market is in a slump,

suggesting that the correlation between Japan’s credkehand the global stock market is

much stronger during periods of crisis. This result is intcast to Longstaff et all (2011),

who reported a weak and insignificant effect of global stastkinns on Japan. We argue
that the insignificance is possibly a result of ignoring oedrity, such that the positive and
negative effects offset each other, leading to an ambigowerall effect. Such a nonlinear
effect of global stock returns provides evidence of finanmatagion from the global stock
market to Japan’s sovereign credit market, which cannotipguced by linear models. The
finding of financial contagion is of particular importance lbth policy makers and investors
since it implies that adapted policies and investmenteggias should be implemented under
different situations. Finally, the curve of the US treasvisid is similar but less nonlinear
than that of the foreign exchange rate. We generally obsemegative effect of the US
treasury yield on Japan’s sovereign CDS spreads, in linke tli literature and our linear
model estimates, but the effect is relatively stronger wtienchange in treasury yield is
extreme.
Table[3 reports the estimates of the linear coefficients@ftrtially linear model with

foreign exchange rate and global stock returns in the neatinomponent. To compute these

estimates, leX be the matrix of the linear covariates of the full model (whaontains the
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domestic stock return and its volatility, US treasury yjeddd global default risk premium)
andll,, be a projection matrix such thXt,) = XII,). Then, the model averaging estimates
of the linear coefficients can be obtained Bfw) = Zf;l @sH(S)B(S), similar to Hansen
(2007)'s model averaging estimator. Since no standardenfa theories are available for
the optimal model averaging estimates, we provide 99% baptsonfidence intervals for

the model averaging estimates. The confidence intervals@fafd BIC are computed with

the selected model based on Theorem 4 of Speckman! (1988jirigrthe uncertainty in the

selection procedure. We see that the domestic stock reagthie strongest negative associ-
ation with the change in sovereign CDS spreads, as in tharlimedel; however, compared
to the linear models, the estimated effect of the US treagety is weak and less significant
in the PLMs.

To check whether our empirical results are sensitive to tedgtermination of nonlin-
ear covariates, we perform estimation and prediction (dised in the next section) under
different specifications of nonlinear covariates, and #wilts are generally quite robust.

4.3. Out-of-sample prediction

Finally, we examine the pseudo out-of-sample predicghilitlapan’s CDS spreads us-
ing six alternative methods: three model averaging metfidés’LM, SAIC, and SBIC) and
two model selection methods (AIC and BIC) for the partialhelar models, and one linear
model averaging method.

The linear model averaging is based on®jRas above. It considers candidate models
with at least one determinant included, so it averagesf\erl candidate models. For PLM
averaging, the most general specification is to consideoalibilities, i.e., that a determinant

can be in the linear component, in the nonlinear componemobin the model. However,
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Table 3: Estimates of the linear coefficients in the pastitiiear models

MAPLM SAIC SBIC AIC BIC

Domestic stock returns —1.2771 —1.5595 —1.5635 —15658 —1.5938

(—2.37,-0.62) (—2.53,—0.65) (—2.52,—0.00) (—1.83,—1.30) (—1.87,—1.32)

Domestic stock vol. 0.0000 0.5330 0.5135 0.5325 0.5928
(-0.56,2.23)  (—0.62,2.28)  (—0.68,2.26) (0.23,0.83) (0.28,0.91)
US treasury yield —0.3246 —0.2441 —0.0858 —0.3292

(—0.78,0.24) (—0.86,0.29) (—0.88,0.03)  (—0.65,—-0.01)
Global risk premium —0.1284 —0.0876 —0.0144

(—0.47,0.05)  (—0.52,0.07)  (—0.65,0.02)

this consideration may cause a dimensionality problem blding too many determinants
in the nonlinear component. Thus, we assign determinariteetaonlinear component only
when necessary. Based on the PLM analysis in the previosestibn, it seems reasonable
to presume a linear relationship between Japan’s CDS spegatthe global default risk pre-
mium and the domestic stock market return and its volatilitys also clear that the foreign
exchange rate and global stock returns have a nonlineacitmpalapan’s CDS spread; thus
it is necessary to include these two determinants in theimeenl component when they are
included in the model. As for the US treasury yield, sinceeffect only exhibits a moder-
ate degree of nonlinearity and the formal linearity testasinformative, we are less certain
whether to assign this variable to the linear or nonlineanponent. Allowing this ambigu-
ous determinant to enter the nonlinear component leads tora complete model space but

may also result in the dimensionality curse. There is poiari knowledge of how to make



OPTIMAL MODEL AVERAGING ESTIMATION FOR PARTIALLY LINEAR MODELS

Table 4: Mean square prediction error of Japan’s CDS spreads

Prediction sample MAPLM SAIC  SBIC AIC BIC
Scenario | 5% 0.8608 0.9360 0.9278 0.9403 0.9253
10% 0.8490 1.0162 1.0181 1.0256 1.0190
15% 0.9708 1.0950 1.0830 1.1007 1.1106
20% 0.9927 1.0933 1.1111 1.0751 1.1107
Scenario Il 5% 0.8865 0.9723 0.9264 0.9673 0.9253
10% 0.7903 0.9410 1.0175 0.9308 1.0190
15% 0.8119 0.9814 0.8542 0.96520.7770
20% 0.8697 0.9695 1.1073 0.9530 1.1107

an appropriate tradeoff between a more complete model spatthe dimensionality curse.
Therefore, we compare the prediction performance of sihods in two scenarios. In Sce-
nario |, we allow only the foreign exchange rate and globatlsteturn to be in the nonlinear
component. In other words, the foreign exchange rate anoagktock return can either
not be included in the model or be in the nonlinear componéttiemodel. The remain-

ing determinants are either not in the model or in the lin@anonent. Scenario Il differs
from Scenario | in that we also allow the US treasury yieldriteethe nonlinear component.
Hence, there are three possibilities for the uncertainrdeteint of the US treasury yield:
not included in the model, included in the linear componentincluded in the nonlinear
component. We split the sample into two sub-samples, onediimation and the other for
prediction and evaluation. We consider the estimation $angrying from 80% to 95% of

the whole period; thus the prediction sample ranging fro@ 20 5% correspondingly.

Table[4 presents the mean square prediction error (MSPEyePIiiM methods. All
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values are normalized by dividing by the MSPE of the lineadei@veraging method. We
see that our MAPLM produces the lowest MSPE for all predicsamples in Scenario |.
In Scenario Il, MAPLM is the best in most cases, except whenptediction sample is
15%. In all cases, MAPLM outperforms the linear Mallows aging, demonstrating that
incorporating the necessary nonlinearity improves thaliptien performance. Since the
performance of linear model averaging is invariant to thenscio, we can also compare the
predictability of MAPLM in the two scenarios. Interestiggive observe that allowing the
US treasury yield to enter the nonlinear component impravegrediction performance for
all methods when the prediction sample is larger than 5%. é¥ew when we have a small
prediction sample, a smaller model space is better. Onégesxplanation is that averaging
over a larger model space may offset the additional noisesktgibdiversification. When the
prediction sample is large, the diversification gain froraraging over a larger model space is
substantial and dominates the estimation inaccuracy diretdimensionality curse. This is,
however, not the case when the prediction sample is sma#édaoivalently, when the training
sample is large) because the predicted values obtaineddiffenent candidate models are
more accurate and more similar to each other; thus, thedifiication gain is smaller.
5. Concluding remarks

Partially linear models have become popular in applied eowairics and statistics be-
cause they allow a more flexible specification compared &alimodels and provide more
interpretable estimates compared to fully nonparametddets. Estimation of partially lin-
ear models is subjected to at least two types of uncertaimgyuncertainty of which variables
to include in the model and the uncertainty of whether a dat@should be in the linear or

nonlinear component given that it is in the model. Typicabeldesting and selection meth-
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ods do not appropriately address these two types of unagrtsimultaneously, especially
when the research interest is to estimate the parametersmake predictions. In this paper,
we propose an optimal model averaging procedure for PLMsjdlratly incorporates the
two types of model uncertainty. The extension from lineadei@veraging to partially lin-
ear models is by no means straightforward and routine bedgimsolves kernel smoothing,
which complicates the proof of optimality. We demonstraeadvantages of our methods by
examining the determinants of Japan’s sovereign CDS spréad empirical study suggests
that there exists a large degree of nonlinearity in the &ffetmacroeconomic determinants,
such as the global stock return and exchange rate. Conmahlivear models do not capture
such nonlinearity, and ignoring the nonlinearity can resud lack of awareness of financial
contagion, which may further lead to inappropriate po@ad investment decisions.

At least three issues deserve future research. First, thputational burden of our
method would be substantial when the number of candidatestaasl large; therefore, a
model screening step prior to model averaging is desir&seond, although the dimension
ps is allowed to increase with the sample sizat must be smaller than and its increasing
rate is restricted by the second part of Condifibn 6. How teet an optimal model averag-
ing method for high- or ultrahigh-dimensional PLMs is areieisting open question. Finally,
if the research interest is to consistently estimate trealimnd/or nonlinear component rather

than to make predictions, a consistent model averaginmagir and post-model-averaging

inference are desired. See, for example, Hjort & Claesk208%),l Zzhang & Liang! (2011)

and Xu et al.|(2014). In these studies, a crucial assumpfidocal misspecification is re-

quired, and the weights also need to have an explicit form.c@ytrast, we do not utilize

the local misspecification framework, and our weight estas@o not have an explicit form.
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Therefore, the development of model averaging estimatorthé linear and nonlinear com-
ponents without local misspecification and analytical wsgvarrants further investigation.
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