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This supplement is composed of four parts. Section B contains the proofs of Lemmas A.-A.8 in the above
paper. Section C contains the full analysis of the infeasible estimators. Section D provides some additional
assumptions for the determination of the true number of groups and a new proposition. Section E studies

the consistency of the panel threshold estimators in the framework of fixed threshold effects.

B Proof of Lemmas A.1-A.8 in Appendix A

Proof of Lemma A.1. Note that
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It suffices to show that the second term in the last line is 0,(1) uniformly in (©,D,G) € B x T'Y x GV.
For each g € G, we have
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where ZZS:I = Zle Z?Zl . Then by the compactness of B in Assumption A.1(iv) and the Cauchy-Schwarz

inequality, we have

T N
NT Z 9) Zelzit(’)’)&'t Z i — g Z Zzt Ezt
t=1 i=1

(0, 'y)EBXF

1/21 N
— sup

9y 1/2

IN
,—/H
H'Mz Z‘H

T
§ 521‘

Following similar arguments used in the proof of Lemma A.3 in Hansen (2000), we can show that
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mMax;<;<N SUP,er H% Zthl zit(7)ei|| = op(1). It follows that SUD(g,7)eBxT |A1 (6,7)|] = 0p(1). Similarly, by
the repeated use of Cauchy-Schwarz inequality
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where we use the fact that E|+ Zthl git|*> = O (') under Assumption A.1(i.1) or A.1(i.2) and Assumption
A.1(iii). Then supg yyepxr |42 (0,7)] = 0p(1). Consequently, 7 Zf\;l Z;F:l 1(gi = 9)0,Zit(7,)eir = op(1)
uniformly in (©,D,G) € B¢ xT'“ x GN. &
Proof of Lemma A.2. It suffices to show (i) max,cg (mingeg Hﬁg - @g”) = 0p(1) and (i)
maxgeg (mingeg HOO - ég”) = op(1).
We first show (i). By Lemma A.1, we have

1
WQ(®07 DO, GO) + 0p<1)

1 -
ﬁQ(@O, DO7 GO) + Op(l),

1 o~ aoa 1 o oa oA
—— = — <
~+72(6.D.G) 720D, G) +0,(1) <

where the inequality holds by the definition of least squares estimator. On the other hand, noting that

Q(0,D,G) is minimized at (0%, D" G°), we have W[Q(G D,G) — 9(0°, D% GY%)] > 0. It follows that

ﬁ[g((il]f)7 G) _ Q(@)07D0’ GY)] = 0,(1). By direct calculation, we have uniformly in (6,D, G),
G) - 0(",D°,GY)|
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where the last equality follows from the fact that sup; 52i = 0(1) under Assumption A.1(vi)
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By the definition of My1(g, g, D, G) in section 3.1, we have
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where the last equality follows from Assumption A.2 which says that there exists a group §* € G such that

Amin[Mn7(g, 5%, D, G)] > ¢, > 0 with probability approaching 1. Consequently, we have maxgeg (mingeg HGS -

= 0,(1).
To show (ii), let 0 (g) = 0¢(g9) = argmingg Hﬂg — %H . Then by the triangle inequality, we have for any
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The first term on the right hand side (RHS) of the last inequality is larger than ¢, 5 by Assumption A.3(a)

and the second and third terms are 0,(1) by the above arguments Then we can conclude that og(g) # 0g(9)

w.p.a.1, implying that o (-) is bijective and has the inverse 75 . Thus, we have for all g € G,
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Therefore we have maxgeg (mingeg g @g”) = 0,(1). This completes the proof of Lemma A.2. K.

Proof of Lemma A.3. For all g € G, we have
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By adding and subtracting some terms, we have

T
Li(g, Z [2 T (B; — B )+git:| + Air(9,9) + Bir(9,9) + Cir(9, 9),
where
= 1
AiT(gvg) = [(ﬁg B B - /6) Z{I} t {Zzt ’Yq 9 + ezt 2 [Eit(’)/g)/eg + 5175(’7_{;)/96)]} )
. / ! = 1) s ’ ~ L. ’ s ’
Birle.0) = 30 (ul) ~ 8 {2905 + B = 5,0y + () 03)] b and
t=1
= 1
Cirl9.5) = DM t{zn O+ L) zit(wg)'egn}
7
ZCE (B3 — [ it (By — By) + git] .
For A;r, have
T T
|Air(9,9)] < ‘[(ﬂ - B Zi it€it | + /6 Z itZit( ’Yg

5108 = 59) = (8, = B 3 FaGar, 6, + 75 67))

= Air1(9,9) +Ar2(9,9) + Ars(9,9)-

For Az 1, we have

T
Aira(9,9) < (/|65 =05 + |16, — 03] Zi"ngz‘t
t=1
T T T
§ 2\/5( Z Tit€is )
t=1 =1 s=1
1 I T 1 I
< QﬁT{ — TitEi — s Eis }
thzl et Tg Ts:Z1
1 I T
< 4\/5T<TZII:%||2 Z )
t=1 t=1



where we used the fact that Hﬁg — OSH < /1 for all g € G. Similarly, we have
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T
- 1
|[Air(g.9)| < Cry/mT (T > (llaall® + 6?9) = Hyr,
t=1

where C] is a positive constant independent of n and T

For B;r(g,§), we have
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Due to the fact § € N, we have [0, < ||6, — 52” + H52|| < 2,/m for all g € G. Following the analysis of

A;1, we can show that
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where Cs is a positive constant independent of  and T'. Analogously, we can show that
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where C3 is a positive constant independent of  and T'. It follows that
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where H;r = C\/nT[+ Zle(HxitHz +¢€2,)] with C = C; + Cy + Cs. Hence, we can conclude that
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where £;7(g,9) = (ﬁg - /6 ) Zt L Tit [3Tit (/32 BS) + &;t) . Letting Cy = QmaXi,tE(”iUit”Q +¢€%,), we have
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By Assumptions A.1 and A.3, we can use Lemma B.1 in the next section to show the first two terms
to be o(T~%). To study the third term on the RHS of the last inequality, we take n such that n <
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where the last equality follows by another application of Lemma B.1 and the fact that H ﬂg — Bg” >c3>0
under Assumption A.3(i). Similarly, we can show that the last term on the RHS of (B.1) is o(7~%). Then

we have
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Lastly, by Markov inequality,

G
Pr (( sup — Z {(0,D) # g) > eT_4> < Pr (% ZZPr(Zg =1)> eT_4>

0,D)eN, ><FG

IN




for any constant € > 0. This completes our proof. H.

Proof of Lemma A.4. By Markov inequality, we have

1 3+e
Pr(sup | >0 (NT)'*) < s O B wiel P =0(1),
i e (NPT 4

implying that sup; ; |wi|| = 0,((NT)*/?). By Lemma A.3 and the order requirement on N and 7', we have
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Proof of Lemma A.5. By direct calculations, we have
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256
< ZE |z:]|® < C < 0o by Assumption A.1(v).

Similarly, sup.,ep (ﬁ it Bz (v)gjit||4) < C < co0. Then we apply Lemma A.4 with € = 1 to obtain
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Analogously, we have

N T N T
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To sum up, we have 6, = 0y(%,) + 0,(NT)~1). B.

Proof of Lemma A.6. Note that
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< WQ(G, D) +0,((NT)™1),
where the first and second equalities hold by Lemmas A.5 and A.4, respectively, and the inequality holds by
the definition of least squares estimator (é, D, G) On the other hand,
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Following the analysis of the infeasible estimator ¥, in Lemma C.10 in the online Supplementary Material,
we can also show that 4, —~) = Op(1/an7) based on (B.2). B

Proof of Lemma A.7. For all g € G, we have
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where ®14(7) = §7 Yieqy Zi(V)'MoZi(7), ®oy(Y) = 7oF Liean Zi(7) MoXi(7,73) and Xi(y,7y) =
Xi(v) — Xi(7]). It is easy to show that
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and @y0(7)0y) = (NT)™®y(7)CY = (NT)_O‘Op(a]_\,iT) = O,((NT)™""), where we use the fact that
an,r = (NyT)'72* and Ny/N — 74 > 0. With these results, we can readily show that
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= Oplanp[(NT)TV2 4+ T71) + Op(NT) ™) = 0, (NT) /)
where the last equality follows from the fact that o € (0,1/3) and N = O(T?). The above analysis also

shows that 99(72) - 92 =0, ((NT)~"Y2+T71).
Next, noting that
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A;M()Ai — B;M()Bz = (Az — Bz)/Mo(Az — Bz) —+ Q(Az — BZ)/M()BZ fOI‘ any two T X 1 vectors Az and Bi, and



Y, — Zi(7)0 = [Xi(v) — Xi(fyg)]ég + p;er + €; with ¢p being a T' x 1 vector of ones, we have

Qg(ég(’)’)a’?) - Qg(ég,'7> = VN [9 0 NT Z Zi(7) MoZi(7)v NT[éq('V) - ég]
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where the last equality follows from the fact that o € (0,1/3) and N = O(7?). B
Proof of Lemma A.8. (i) Let Py = F¢7.;. Note that
1

i€GY zeGO

T\/ﬁ Z Z {zie( 70 Zzt(’Yg)]}gis = A — A

1€GY s,t=1

It suffices to show that (i1) A; <, N(0,90,) and (i2) Ay = \/%B%NT + 0, (1) . To prove (il), we relabel
the index G) = {i1,...,in,} to {1,..., Ny}. Let ¢ denote a 2K x 1 nonrandom vector with ||¢[| = 1. For
m=(i—1)T+tfort=1,.,Tandi=1,.., Ny, let (,, = {zit(vg) o Z;F:l E(zit(vg))] git. Let M = N,T.

Then we have
;M
ClAl = — C/Cm.
VT 2

Immediately, {¢,,}M_, is a martingale difference sequence (m.d.s.) under the filtration F,,, = o({(,, : 1 <

n < m}), the minimal sigma-field generated from {¢,, : 1 <n < m}. Apparently, maxi<m,<am E ¢ t<c

mll
for some C < oo under Assumption A.1. In addition,
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1€G2 t=1 s=1
= Aii+42



By Assumption A.6, A; 1 = ¢/ Qg,l(’yg, 79)e. For Aj o, we have by Cauchy-Schwarz and Markov inequalities

o\ 1/2
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Then A; % N (0,Q24,1(79,79)) by the Cramér-Wold device and the martingale central limit theorem.
Next, we consider As. Note that

4 = Z Z [2it 79 Eis] Z Z {(zit 79 Zzt(Wg)]) gis — E [Zit(VS)Eis]}

zEGOSt 1 zeGost 1

= A2,1 + AQ’Q.

For As 1, we have Ay = \/ N = ZzeGO Zt 1 Zéq E I:th(/yg 513 \/ By nyr. For Az 2, we can easily
verify that E(As2) =0 and

i€GY

Z [{zit(vg) — Elzit(vg)Yess — E [2is(vg)eis]]

s,t=1

E|Asp|® = =0(T7)

by using the Davydov inequality for strong mixing processes. Then As 2 = O, (T~'/?) and (i2) follows.
(ii) Now, let u; = Zi(fyg)/ Moe;/+/NgI'. Then we have u; independent across ¢ and
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By Theorem A of Yang (2016), we have E max; Hul||2+5 < C(N,)~+9/2 max; max; << Hiit(’yg)eitH%%
for some § > 0 and C' < co. Here |||, = {E£]-|"}*/". Then Lindeberg condition holds and we have the
desired claim. W

C Supplementary Lemmas

We first state a technical lemma that is also used in the proof the main results in the paper. Then we study

the asymptotic properties of the infeasible estimators.

C.1 A technical lemma

H8+e

Lemma C.1. Let &, denote a d¢ x 1 random vector with mean zero and E ||, < oo for some € > 0.

Suppose that {&,,t =1, ..., T} is strong mixing process with mixing coefficients « [s] < ¢, p® for some ¢, > 0

10



and p € (0,1). Then as T'— oo and for any ¢ > 0 we have

1 o 4
Pr( T;ﬁt >c>:0(T ).

Proof of Lemma C.1. The proof is similar to and simpler than that of Lemma B.1(ii) in Wang, Phillips,
and Su (2018) and thus omitted. W

C.2 Asymptotic properties of the infeasible estimators

We present the analysis of infeasible estimator in this section.
Lemma C.2. Suppose Assumptions A.1, A.3(iv) and A.4 hold. For any g € G, we have that

Vg~ ’72 = 0y(1), and f, — 92 = 0op((NT)™%).

Proof of Lemma C.2. First, we show the convergence rate of 0,(y) for any v € T'. Let Z;j(y) =
([zi, windis (V)]s -oos [, 2ipdir (7)), a T 2K matrix. Let Xi(v1,79) = (@inldia (v1)—=din (v2)]; -y mir[dir (71)
—dir(7,)])'s aTx K matrix. By the definition of 0, (), we have 0,(v) = [>;cqo Zi(V) Mo Zi(M)] ™ X scqo Zi()'

g9 g
MyY;. It follows that

Og(7) — 05 = [B14(y Z Zi(7) Mogi — [D14(7)] " Bag(7)5. (C.1)

ZEGO

where ®1,4(7) = ﬁ ZieGg Zi(7) Mo Z;i(7), Pag(y) = ﬁ ZieGg Zi(7)' Mo Xi(v,7)). By Assumption A.4(i),
®14(7) = Op(1) for all v € T'. Tt is standard to show that ﬁ Ziecg Zi(7)Moe; = O,(NT)~Y/24T~1) and
®94(7) = Op(1). Then we have ég('y)—Gg = O0,((NT)~*+T~1) by exploiting the fact that 52 =O(((NT)~ ).
Given the fact that o < 1/3 and N = O(T?), we can conclude from (C.1) that ,(v) — 92 = O,((NT)™®)
and
0g(7) — 0y = — [21(7)] 7" @2(7)3 + 0, (NT) ™). (C.2)
Next we show the consistency of 7,. Let ®34(7) = ﬁ Zierg’ Xi(v, fy(g))/MOXi(fy, 72). By direct calcu-
lations, we can show that

1 < .y -
NgT (Qg(egfvyg) - Qg(egavg))

= 0y D34(7,)0, + (O — 09)'P14(7) (0 — 90) +2(0y — 0g)' P2y (7,)0

—(8, _90 NT Z Zi(9,) Mog; — 69NT Z Xi( 'yg,'yg) Mye;. (C.3)
1€GY g 1€GY

Note that the last two terms on the right hand side (RHS) of the above equation are o,((NT)~2%). This, in
conjunction with (C.2) and (C.3) implies that,

NlT (Q (vga'Yg) Qg( ,72)) = 52'[‘I>3g(%) - (I)Qg('VYg)I(blg('ng)_lqbg(;Yg)]‘sg + Op((NT)_2a)~

By Assumption A.4(ii), we have that

(1)3(;)/51) - (I)Q(:Yg)/(pl(:yg)ilq)Q(;Yg) = zbg(:)/g)a
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which is a K x K matrix with minimum eigenvalue Amin[Wy(7,)] >
follows that

- 72’} w.p.a.1l. Hence it

(NgT)>* 71 (Qy(By,,) — Qg(65,79)) = 2™ ||CY|| 7 min{1, |7, — 15|} + 0p(1),

where we use the fact 50 = (NT)~“ and Ng/N — 7w, by Assumptions A.1(vi) and A.2(iii). On the other
hand, we have Q, (6 g,’yq) Qvg(@g,'yg) < 0. We can conclude that 5, —~9 = 0,(1).
] Given the consistency of 4,, we can easily show that ﬁ ZieGg Zi(74) Mo Xi(79,7,) = 0p(1). Then
04— 0) = 0,((NT)~*) follows. W
Lemma C.3. Let hit(v1,72) = [[@acill |dit(72) — dit(71)] and Kit(v1,72) = il |dit(72) = dit(71)]. Sup-
pose Assumptions A.1(v) and A.5 hold, there is a constant C; < oo such that for y< v; < 75 < 7% and
r <4,

max E [hit(v1,72)]" < Cr vz = 71| and max E{kir(v1,72)]" < C1 vz = 7l -

Proof of Lemma C.3. For any random variable Z,
gl
E[Zdi(7)] = E(Z - Hai <7}) = E[Hai < v}E(Z]qir)] = / E(Z|qit)dFit(git),
where Fj; () is the cumulative distribution function (CDF) of g;; with the corresponding PDF f;; (). Taking

derivative with respect to v on both sides yields

d

d_7E (Zdis(7)] = E(Z|qie = ) fir ().

Then by the Holder inequality and Assumptions A.1(v) and A.5

E(l|lzieitl” laie = 1) fie(v) < [E(lzacall* lgie = 1] fir ()

< Ccy for some C' < 00

d .
d_yE [lziteiell” dit(7)]

This implies that
max E [hit(v1,72)]" < C1 vy — 11| with C1 = Cey.

it

Analogously, we have max; ¢ F [kit(v1,72)]” < Ci|v2 — 71| W

Lemma C.4. Suppose Assumptions A.1, A.3(iii)—(iv) and A.4-A.5 hold. Then there exists a constant
Ca < oo such that for all y< vy <7, <Fand g€ g

\/— Z Z i (V1:72) Eh?t(’hﬁz)) < Colva =l
i€GY t=1
2
1 T
E‘W Z Z(kzgt(’ha’Yz)*Ek?t(’hv’YQ)) < Colyg— -
97 ieGY t=1

Proof of Lemma C.4. For notational simplicity, let h%,(v1,7v5) = [hit(71,72)]" for r > 0. By the indepen-
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dence across i and strong mixing over t for {(z;s, qi, €it)}, there is a constant C'T such that

2

\/— Z Z{hzt Y15 72) [hzzt(’ha%)]}

1€GY t=1

2

1 1
= = E|l— h? — E[h2
N, ieZGg \/T;{ (711, 72) [ 1t(’71a72)}}
ol 1 & ) , )
< N Z TZE{hit(’Yl:’YQ) — E [ (y1,72)] }
Yiead " t=1
ot
< N,T Z ZE it '717'72)} <G |72 — 71l
€GO t=1

The first result follows by setting Cy = CTC;. Analogously, we can prove the second result in the lemma. W

Lemma C.5. Let J, n7(7) = ]\Q,fl/QT_l/2 Y icqo Zthl xiteitdis (7). Suppose Assumptions A.1, A.3(iii)—
g

(iv) and A.4-A.5 hold, there are constants K; and K> such that for all Vg 9 € G,€>0,n>0 and

§ > (N,T)7', if \/N,T > Ks/n, then

, K,6°
Pr sup  [Jgn7(Y) = JonT (V) >0 | £ —5
v <y<y' 46 n

Proof of Lemma C.5. The proof is similar to that of Lemma A.3 in Hansen (2000). W

Lemma C.6. Suppose Assumptions A.1, A.3(iii)—(iv) and A.4-A.6 hold, we have for g € G,

JynT () = Jg(v),

a mean-zero Gaussian process with almost surely continuous sample paths.
Proof of Lemma C.6. The proof is similar to that of Lemma A.4 of Hansen (2000). W

Lemma C.7. Let Gy nr(7) = ﬁ ZieGg S CY wiyw, CPldir () — dig(vy)] and Ky nr(7y) = ﬁ Ziecg
Zt L lziell |die(v) = die(79)]- Under Assumptions A.1, A.3(iii)—(iv) and A.4-A.5, there exist constants B >
0, 0 < d < o0, such that for all n > 0 and € > 0, there exists a ¥ < oo such that for all (N,T) and g € G,

Pr inf GQN—T(Z) <(1-md] < ¢
U/O‘NT<|’Y 'Yg|<B }FYg Vg‘
K
Pr sup Kynr(y) >1+nk| < e

v/ant<|y—=7y|<B 7y =79

Proof of Lemma C.7. The proof is similar to that of Lemma A.7 of Hansen (2000). W

Lemma C.8: Under Assumptions A.1, A.3(iii)—(iv) and A.4-A.5, there exists some T < oo such that for
any B<ooand g=1,...,G,

Pr sup [ Jg.nr () = Jg.nr (7))
E/QNTS‘W—VEHSB VAENT ’7_72‘ B

13



Proof of Lemma C.8. The proof is similar to that of Lemma A.8 of Hansen (2000). W

~ 2 -
Lemma C.9. Let Kynr() = Ny' Cica [T—l ST el |die(y) — dit(yg)” and J, yr(7) =

Nq—1/2T73/2 ZieGg Zle Zzzl ziseir(dis(v) —dis (7). Suppose Assumptions A.1, A.3(iii)(iv) and A.4-A.5
hold. Then there exists some 7 < co and B > 0 such that for any n > 0, ¢ >0 and g € G,

jg,NT(V)‘ ‘f( ,NT(“Y)‘
Pr sup — 7 > " <eand Pr sup o > " <e.
T/anr<|y—79|<B VON,T }W—’Yg’ B/anr<|y—+9|<B ”Y_’Yg}

Proof of Lemma C.9. The analysis for the first result is analogous to that of Lemma C.8. For the second

result, we consider the case v > 79. Letting kit () = kit (7, 7)) = llzic| |die(v) — dit(72)| , we have

T 2 T 2
EKynr(y)] = N;' Y0 BT lall|di(y) - dz‘t(ﬁ)\] =N,' > BT Zkit(V)l
i€GY t=1 i€GY t=1
T 2 . 2
= Ng_l Z Var |T7! Zklt(’w + Ng_l (? ZEU{?”(’}/)]>
i€GY t=1 1€GY t=1
T 1 T 2
< CWNGP Y T2 B [ku(y)]+ N, <T ZE[kit(V)]>
iGGg t=1 ’iGGg t—1
cte 2
< 2 -0+ Gy =8P,

T

where the first inequality follow from the fact that Var [T -1 23:1 k’it(’Y)]Q < OfT2 ZZZIVar[kit(v)] <
CtT=25T | Elkit(7)]? for some CT < oo by using the fact that {k;(y),t > 1} is also a strong mixing
process, and the last inequality follows from Lemma C.2.

First we consider the case ¥ —~9 > 0. Choose a b > 1, B < e(b — 1)/(4C?b*) and T such that
T/ant < B. We set v; = 72 + "% /ayr for j = 1,...,n+ 1 such that v,, + 1 > B and ~,, < B. Since
YT < B, n < logy,(Banr/T). When (N,T) is large enough, we can have igﬁ% < €/4. Then we can

aNT

calculate
Pr| sup —f{ngT(%JL_l) >n] = 2”: —E[R97NT(7]6+1)}
1<i<n ;=Y = " v =9
- iCT(h ’7j+1*72’/T+i012‘7j+1*72‘2

= oy - = -9
CtCibn  CER2o(b"F! —1)

n T n anr(b—1)
ctCibn  C® B

n T n (b-1)
For any v € [7) —l—ﬁ/aNT,'yg + B, there exists a j € {1,...,n} such that v; <y < ;.. In view of the fact

that K, y7(7) is monotonic in -, we have Kot () o Konvrisn) 1t follows that

< /2.

e T
‘f(g,NT(“Y)) K ,
Pr sup T > <Pr| sup L%Oﬂ)>n < e/2.
T/oanr<r,~19<B |7 =] 1<jgn v =Y



A symmetric argument gives us the proof for the case —B < v — ’yg < —T/apn7. This completes our proof.
|

Lemma C.10. Suppose that Assumptions A.1, A.3(iii)-(iv) and A.4-A.5 hold. Then we have anr(¥, —
79) = 0p(1) for all g € G.

Proof of Lemma C.10: Let B,d, k be the coefficients defined in Lemma C.6-C.8 and ¢ = HCSH . Pick an
n such that min{1,¢,k} > 7 > 0 and 7.*(1 — n)d — 247w 5ckn — w2 (6ck + 4¢®)n > 0. Let Exp be the joint

event that, for all g € G: |§, — 49| < B, (NT)~ Bg — 52” <n, (NT)* |5, — 52” <n,
G
o Gl L,
T/anr<|v-20]<B |7 =Y
K
sup —g’NT(Ow (1+n)k,
v/ant<|y—79|<B Rt
| Jg.nr(7) = TN (7))
sup 5 n,
T/anT<|y—79|<B VON,T b/_fyg’
‘jg,NT<7)‘
sup S R E— n,
T/anr<|v—9|<B VON,T v - 72’
K
sup g.NT(7) n.

v/ayr<-|<s |7 =73l

Then by Lemma C.7-C.9.Let X; (7, ’yg) = (xa1[di (’y)—dil(’yg)], . xiT[diT('y)—diT(’yg)])’, aTx K matrix. Let
AXy . =Xg(7,7)) = {Xi(7,79),i € GY}, which is an NyT x K matrix. Let Z;(y) = ([}, zjdin (7)), ..,
[, 2l dir (7)), a T x 2K matrix. Let Zg(y) = {Zi(y),i € G)}, which is an N,T x 2K matrix. Let
AX, ., = (In, ® Po)AX,, and Zy(19) = (In, ® Po)Zg(7)) where recall that Py = T~ upify. Let g; =
(€i1y ., eir)’ and g4 = {Ei,’i S Gg} , an NgT x 1 vector.

QonT(0,7) — Qonr(0,7)) = §'AX! (In, ® Mo)AX, 6 — 25 AX], _ (In, ® Mo)Zg(79)(0 — 6)
+28' AX! _(In, ® Mo)eg
= 6YAX] AX) 50+ (6 —00) AXL AXy (6 +0y) — 6'AXy ,AX 6

p—) p—
—26'AX, L Zy(v0)(0 — 09) + 26’ AX, Zy(79)(0 — 09) + 25’ AX!, e,
—25'AX, e,

Let 5g = (NT)~*C, for some C, such that ||Cg — C’g” < k, implied by Enp. Suppose that Enr happens
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and for v € [y +7T/ant,~) + B], we have

20—1 Qg,NT(éga 7) - Qg,NT(éga 72)

N, T
(s T) [y = 9]

| mRCYAX) AX,,Cf 70, + CY)AX,  AX,,(Cy — O 72CAX, A, 0,

NyT |y =79 (NgT) |y =] (NgT) |y =9
_Q@C“A&m%mﬁ—Ai;ﬁﬂﬁﬂU%ﬂ%@—ﬂ&+2wﬂcHAQM%—AX%%
(NgT) |y =] 9N (NG T = |y = 7]

m2%Gy N1 (7) Ky nr(v) s Ko nr(7)

> g —9 e re + C° C. —C° 9 — 2 c 9,

= h_72| Tg (H qH H 9H>H 9 gH h_72| 75" 1G]l h_72|

a a |l K +}? o J7 v) — J7 70
—4my |Cy| (N, T) 16, — 92“ . NT(7) ~r(7) 5 H7TgCg|| | N () — Jg.n1( g)}

v = 9] VAT | =)
N ‘jg,NT(V)’
2l Coll
> 1 —n)d—m*2c+ )l + )k — 7. (c+n)*n — 475 (¢ +n)nl(1 + n)k + 7]
—4rg(c+n)n
> Wzo‘(l —n)d — 247y ckn — ﬂzo‘(ﬁck +4c*)n

0,

which indicates that 5, does not belong to [) +7/an7,7) + B]. A symmetric argument shows that if Exyz
happens ¥, does not belong to [’yg - B, 'yg —7/anT,]. Hence, we have shown ¥, — 'yg = Op(1/anT) for all
geg.

Lemma C.11. Let G} yp(v) = an,7GynT(V) + v/an,r) and Ky (v) = an, oKy nr(V) + v/an,T).
Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4-A.5 hold. Then we have that uniformly in v € ¥,
G, nr(v) LN wy,p |v|, and K yr(v) LN Dg |v]

where wg p = CS’DSCS for g € G and ¥ is a compact set.
Proof of Lemma C.11. The proof is similar to that of Lemma A.10 in Hansen (2000). W

Lemma C.12. Let Ry n7(v) = /an,T [Jg,NT(’Yg +v/an,T) — Jg,NT('Yg)] . Suppose that Assumptions
A1, A.3(iii)—(iv) and A.4-A.5 hold. Then on any compact set ¥,

Ry nT(v) = By(v)

where B, (v) is a vector Brownian motion with covariance matrix E [By(1)By(1)'] = V).

Proof of Lemma C.12. First, we show the convergence of finite dimensional distribution: Ry n7(v) <,

N(O, Vg()). Let UnZ(U) = \/ﬁ Zle zitsit\/m[dit(’yg + ’U/OéNgT) — dzt(’)/g)] and .E = J({unj(v), _] S ’L})
By Assumption A.1(ii) and Liapunov’s central limit theorem (e..g., Theorem 23.11 of Davidson (1994, pp.372-
373), it suffices to verify that

Y tni(@)uni(v) L [0 Vi and Y funs(0)]| = 0p(1).

i€GY i€GY
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Note that

an,T
D tni(0)uni(v) = NT Z$1txzt5zt |dit (g + v/an,T) — dit(7g)]
i€GO 97 ieGY t=1

04N T
Z Z Tit€irdisEis|d zt(’Yg +v/an,r) - zt('Yg)][diS('Yg +v/an,r) — diS('Yg)]
zeGO 1<s£t<T

= Ag,NT + Bg,NT~
For Ay n7, we can conduct similar calculations as used in the proof of Lemma C.3 to obtain

E [wia}e?, |di (75 +v/an,1) — die(79)]]
v/an,T

- E(xitxgtff?twit = ’72)-

Then we can readily show Ay y7 — |v] Vgo by using the Chebyshev inequality and the fact that {(x;, ¢it, €i)}
is independent across ¢ and strong mixing along the time dimension. Let (,;; = ;i€ [dit(’yg +v/a NgT) —

di1(79)]. For By N, we have for any K x 1 nonrandom vector ¢ with ||c|| = 1, we have

an,T an,T O
|E[CIB9,NTCH = Ngjw Z Z COV CCuHcha S Z Z Z |COV chtchw)‘
97 ieGO 1<s#t<T lGGO s=1 t=s+1
QaN,T
= Ngjw Z Z |COV(C Czt?ccza) N Z Z |COV CCzbcha)‘
97 ieGY 0<|s—t|<Tp i€GY |s—t[>To
aN T (3+€0)/ (4+¢€0) 2
< 2T‘OO‘NQT mlaXO<\£’IEﬁ(§T |COV(01CztaCQC1s Z {Oé } 0 0 m%XHCit||8+go
i€GY
-2 3+e €
< Than,rO((an,r) ) + CTay,rp C T/t — o (1)

provided Tp is chosen such that Ty = o(an,r) and Tp/(InT)® — oo for some constant co > 1. This
implies that F [By n7] = o(1). In addition, it is easy to verify that Var[¢' By n7] = 0(1). Then we have
By nT = 0p (1). Consequently, Zie(}g Ui (V) Ui (V) LA [v] Vgo.
Now, we verify that D, o lltns (0)]|* = op(1). Note that
9

2 T 4
E[ ! nl( )]4 = aNgT E ' C’Lt
Z C U v (NgT)2 Z C tzzl

i€GY i€GY
a7 a 4
= P o 2P ro)
g ieGg t=1

= Olan,r (N;T) ™) +0(1)=0(1),

where the second equality follows from the simple application of the Davydov inequality for strong mixing
processes and similar arguments as used in the analysis of By nr. Then Ziecg [ tins (0)||* = 0, (1) by Markov
inequality. Then the pointwise distributional result follows.

For the stochastic equicontinuity, the proof procedure is similar to that in Hansen (2000) and thus
omitted. W

Lemma C.13. Let f(;"NT(v) = aNng(g,NT(vg +v/an,r) and j;NT(E)) = aNgTjg,NT(vg :i— v/an,T).
Suppose that Assumptions A.1, A.3(iii)-(iv) and A.4-A.5 hold. Then K:;,NT(U) L0 and J;’NT(v) 2
0 uniformly in v € ¥, where V¥ is a compact set.
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Proof of Lemma C.13. By the proof of Lemma C.9, we have
- 1 ,
E[Kg,NT(U)] = CYNQTO T }v/aNgT‘ + ’U/OKNQT} — 0(1).

Let k;(v) = T! ZtT:1 kit (v), where ki (v) = ||l@i]] |dit('yg +v/an,r) fdit(’yg)|. Let Riy(v) = Ki(v) —
E[ki(v)]. Then

2
-~ _ aNqT
Var(Kg np(v)) = oRo B ||Ng' Y {ri(0)® = Elra()’l}| | = —5 D_ B{wi(v)* = Blwi(v)*]}
ieGy g i€GY
a7 d )
< NS E [ S
9 ieGY t=1
8% & T ! 8o 1 ) !
< e 2 BT Y Ra)| +—m— D E TlZE[mt(v)}]
9 ieGY t=1 9 ieGY t=1
Ca’ T T ?
~ 4 ~ 2 -1 -
< St XA m (S o) o0 e
t=1

where the first equality follows from the Jensen inequality, the second inequality follows from the C, in-
equality, the third one follows from the repeated application of Davydov inequality and the fact that
max; ; F [k (v)] = O(a&;T), and the next to last equality holds by the moment calculations. Then
K nyr(v) = o0p (1) for each v € W. This result, in conjunction with the monotonicity of K yr(v) in ei-
ther the half line [0, 00) or the half line (—o0, 0], implies that IN(;"NT(U) %, 0 uniformly in v € ¥. See Hansen
(2000, p. 598).

For j; N1(v), we can follow the above arguments and show that j; N1 (@) = 0, (1) for each v € V.
Following Lemma A.11 in Hansen (2000), we can readily show the tightness of the process {J5 y(v)}. As a

result, we have j;NT(v) 0 uniformly in v € ¥. B

Lemma C.14. Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4-A.5 hold. Then on any compact set
Y

)

20,2 20,2
Q; NT(U> = _Wgawg,D "U| ) Wgawg,VWg(U) _ Wg,v _Wgawg,D |1)| + 2wg(wv) ,
’ Wg,D Wq,v Wg,v
_ (011,00
where wy v = C'V,'Cy.

Proof of Lemma C.14. Let Xi(*yg + U/OéNgT,’Yg) = [xil[dil(’}/g + U/OéNgT) _ dil(,yg)]’ -~-a$iT[diT(’72 n
v/an,r) — dir(7})]]'. We have

Q;,NT(U) = Qg (995 72) - QQ (éqa 72 + U/aNgT)
= - Z Sy Xi(VS +v/on, 1,79 Xi(V) + v/an, 7, 79)5, + 2 Z 8y Xi(Y) +v/an,T,79) e
i€GY i€GY
+L97NT(U)a
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where

Lonr(v) = 2(N,T)*(8, = 89) Ry nr(v) = 2ANgT) 3, K v (0)(NgT)* (B, — By)
—(NgT)* (8 = 89) Ky e () (NgT)* (8 + 0) + (NgT) 8, K o (0) (N, T)3,

+2(N T)aag g, NT( 25g Z Xz(’Yg + /U/aNgT”Yg) MUZZ(’Yg)(GQ - 92)
i€GY

L197NT(U) —+ ...+ L6g,NT(U)~

By Lemma C.10, we have

Z Sy Xi(vy +v/an,r,v9) Xi(V) +v/an,1,79)d,

i€GY
= (NT)** Z Cngi(Wg +7)/04N£,T7'72)/Xi<'72 +U/04N9T772)C8
1€GY
N, QanN,T
= (PR X G+ v/anr ) X + /a1 50
1€GY

N,
= (F)Gonr(v) = 7w, o]

By Lemma C.11, we have

Z 62/Xi('yg+v/aNgT,fyg)'5i = (NT)~ Z C’O'X 7g+v/aN T,vg)
1€GY 1€GY
Nga 1/2—a 01 0
= By [ () + vfan,r) — Jynr(4D)
N (e
= (F)) "Ry (v)

= 7rgC’ "By (v) = 7/ e v W,y(

By the fact that (NT)*(0, — 92) = 0p (1), Assumption A.1(vi), and Lemma C.10, we have Lyg ny7(v) =
0p(1) uniformly in v for £ = 1,2,3,4. By Lemma C.12 we have that L5, n7(v) = 0p(1) uniformly in v. For
Leg, nT(v), we have

IN

||}‘””’ S X8+ v/an, 1,90 Mo Zi(70)
i€GY

= 0,(1)0,(1)Op (1) =0, (1) uniformly inv € ¥

|Leg,nT (V)] 2 {(NgT)

{(v, 1)

as we can follow the proofs of Lemmas C.10 and C.12 and show that Q—N£|| ZZGGO Xi(Yo94v/an,r,7y) Mo Zi(vy)||

= O, (1) uniformly in v € W. Consequently, we have Q% yr(v) = —72%wg, p [v| + 2y /72%w, v W,(v) on any
compact set . l

D Determination of the Number of Groups

Recall that 6%(G ) = = Q( 0@ DG G9). Let 6%, = 7 ZZ 1215 1 €%, In the estimation, we require
each group to contain at least |vN| individuals. We denote the index set of members in group g as Gy,

19



where G, € G, = {Gy, |G| > [vN|} for all g € G. Let N, = |G,|. We can define five empirical processes
that depend on Gy:

1 . 1 .
J(Gg,y) = == > Zi(y)Mogi, AJ(Gg,7,7") === Y Xi(7,7") Moei,
NgT 1€Gy NyT 1€Gy
1 * 1 *
él(vav) = N T Z ZZ(’}/)/MOZZ(’Y)v (DQ(vava’y ): N T Z ZZ(W)IMOXl(’Ya’Y ), and
97 1eGy 97 ieGy
* 1 * *
23(Gy, 77" = > Xi(v, ) MoXi(7,7)-
97 ieGy

Let G¢ be any possible group structure when the number of groups in {1,2, ..., N} is given by G. We assume
the following conditions hold for the empirical processes.

Assumption D.1. (i) Pr (inf(g, 1)c6, x Amin [P1(Gy,7)] > ¢) — 1 as (N, T') — oo for some ¢ > 0;

(ii) Pr (infaeg, infjy e |>5/7 Amin [P3(Gg,7,7%) = P2(Gg,7,7") @1 (G, ) P2(Gy,7,7")] /Iy = 77| = ¢)
— 1 as (N,T) — oo for some ¢ > 0 and o > 0;

(iii) Pr (SquEG,, SUD |y |55/7 |Pe(Gg 7, Y ) /|y = 7*] < C) — 1for ¢ =2,3as (N,T) — oo for some
C > 0;

(iv) Pr (5up(c, )t (G, )| < OT=1/2) 1 for some € > 0;

(v) Pr (SqugeGu SUP |y = (>5/7 [AT(Gg, v, Y /|y =77 < CT’”Q) — 1 for some C' > 0 and v > 0.

Assumption D.2. (i) As (N,T) — 0o, minj<g<go minge &ég L5 o?, where 02 = lim(N7T)ﬁoo(NT)*1
N T
Yic1 1 B (e3) -

(ii) AT — 0 and TAnp — o0 as (N, T) — oc.

Assumption D.1(i)-(iii) requires the sample covariance matrices are well behaved for any subset of in-
dividuals. Assumption D.1(iv) is the assumption that plays the most important role in our analysis. It
requires sup(g, 1), xr 1/ (Gg: VIl = O,(T~Y/2) for all (Gy,7) € G, x I'. For the true group members
G}, we can show that J(GJ,7v) = O,((N T)~'/?) under some regularity conditions. However when we are
estimating the model with G > G, it is possible that ‘J(Gg,’y)H = 0,(T~/2). Similar remarks hold for
D.1(v). Assumption D.2 specifies the usual condition for the consistency of an information criterion. In

particular, Assumption D.2(i) in conjunction with the first part of D.2(ii) helps to eliminate all underfitted
models and the second part of D.2(ii) helps to eliminate the overfitted models.

Proposition D.1 Suppose Assumptions A.1-A.5 in the text and Assumption D.1 hold. The following state-
ment holds:
6%(G) — 5% = 0,(T™Y) for any G° < G < Gmax.

Remark. The probability order O,(T~') in the above proposition is not a conservative order. To illustrate

this point, we consider a simple regression where y;; = j1+ £;; so that there is only one group. If we estimate
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the model with G = 2, we have
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=
m
(33
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9=1ic@, t=1 icG, t=1 i=1 t=1
2 2 2 2
N, [ 1 _ N, (VT _
= T E — = g Ei < — g — | =— E g; ,
N | N, &= N s =
g=1 9 ieGy g=1 i€Gy

where &;. = =+ Zthl ity G1 = {ilg;. <0}, Go = {ilz;. > 0}, N, = ‘ég) , and the last inequality holds by the
definitions of {Gg} and 62(2). [Note that 6%(2) is minimized at (G, G5).] Without loss of generality, we
suppose that e is i.i.d. N (0,1) over both i and t. Then v;r = VTZ;. « N (0,1) and by the strong law of
large numbers

—Z

ieG

_N
M

| &
N Z vir1 (vir <0)
i=1

N
\/T Zgi.l (Ei. < 0)

1 =1

Y2|E[Z1(Z <0),

where Z «~ N (0,1) and we use the fact that N, /N = = Zf\il 1(z. <0) 3 P(Z <0) = 1. Similarly,

N
T N 1 a.s.
~£ E E g.1(8;. >0) —E virl (v > 0)| = 2|E[Z1(Z > 0)]].
Ny L2 TN |N Pt

This calculation indicates that the negative value T' [&2 (2) — 5%7] has the probability order O, (T~"') that
cannot be o, (T~!) . In other words, the order O,(T~') is a tight probability order for 6%(2) — 5%

Proof of Proposition D.1. Following similar arguments as used in the proofs of Lemmas A.1-A.3, we can

show that individuals from the true group G(g) would stay in the same estimated group w.p.a.l, i.e.,

Pr| sup 1(g; =g, g?#g?):l —0as (N,T) — cc.
1<i<j<N
We only consider the case where some true groups are further divided into several groups. For notational
simplicity, we only consider the case G° = 1 where our true parameters can be rewritten as (90/,70)' =
(BY, 6% ,~°)" without the group-specific subscript. Since we still estimate a PSTR model with G > 1 groups,

(G
the estimators, e.g., (9; ), ;)/_E]G)), still have the group-specific subscript. But for notational brevity, we will

denote (9( ),'Ang)) s (0,4 ¥,)- Then we can write Q(6@) DG G©@) = 25:1 Qg(ég,&g), where Q,(-,) is
defined in Section 4.1. Followmg the analysis for (C.2) in the proof of Lemma C.2, we have

Mo& - ®1 g(’Yg) 16279(;)/9)505 (Dl)

where ®1,4(7) = £ Yeq, Zi(7)MoZi(v) = @1(Gg,”/) and ®4(7)
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@2((}9, v,74Y). Following the similar analysis for (C.3) of Lemma C.2, we have

< [Qol0,9,) — Q,(0°.1°)]
= By (3)0° + (g — 0°) By (3,0, — 0°) +

where ®3,(7) = <4 Zz‘eé—g Xi(7,7°) Mo Xi(7,7°) = @3(Gy,7,7°). Plugging (D.1) into the above equation,

we have

% [Qg(é‘(‘ﬁ’?g) - Q9(907’70>}

g

50/ [@39(’3’9) - @29(’?g)/élg(ﬁ/g)_lézg(ﬁ/g)] 50

_J(Ggﬂ ﬁ/g)/(i)lg(’?g)il‘](éga ﬁg) + 260,@29(’?5])/&)19(ﬁ/g)il‘](éga ﬁg)
A~ / ~ ~

) (5g - 50) AJ(Gy,4y07°) — 20" AT (G, 74,7°)

= AQl,g + ...+ AQ5’9.

We discuss two cases: (1) (NT)~*T"/2 = O(1) and (2) (NT)~°T*/? — o0 as (N, T) — oo.

In Case (1), we have 6° = O(T~'/?). By Assumption D.1(iii) and equation (D.1), we can readily show
that 6, — 0° = O,(T~'/2). With this result, then we can show that AQ;, = O,(T~ ") for I = 1,...,5 by
using Assumption D.1.

In Case (2), we have f, — 00 = O,(T~Y/2 + (NT)~ |4, — 7°|) by (D.1) and Assumption D.1(iii). Then
we can apply Assumption D.1 to show that

AQiy = Op((NT)>* |3, —=1°]), AQzy=0y(T 1),
AQsy = Op(TVANT) ™4, —1°)),

AQiy = Op(T VANT) |5, —+°|" + T~ |5, —+°|), and
AQsy = O (T YAHNT)™ 4, —7°|.

Because AQ; , > 0 by Assumption D.1(ii) and ﬁ [Qg(ég,fyg) - QQ(OO,WO)} < 0 by the definition of
least squares estimation, we can conclude AQ; , should have at most the same order as 3, , AQ; ;. By
comparison between these orders, we can show that |§, —7°| = O, (T (NT)?*) and Zle AQ;,=0,(T™)

follows. Consequently,

G
0 > &2(G)—JNT—%Z[Q (0,:34) — Qg0 ,v)]
g=1
A T
- > ¥wr [0,(0,,7,) — 25(6°,7)]
G
> > [04(6,7,) - 0,(6°,97)] = 0T,

This implies that 62(G) - 5?\71“ = O,(T71) for any G < G < Gax. B

]
—~
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E Consistency of group membership estimators in the fixed-threshold-

effect framework

In this section, we discuss the asymptotic property of our least squares estimator under the constant threshold
effect framework (i.e., @« = 0). Suppose Assumptions A.1-A.5 hold except that we now let & = 0. Then one
can follow the arguments as used in the proofs of Lemmas C.2-C.10 to show that "yq vq‘ = O,((NT)™Y)
and 0y = 0(79) + 0,((NT)~'/2), where (fy,7,) is infeasible estimator for g € G.

In the PSTR model, the major difficulty is to show the consistency of the estimator of the latent group
structure as in Theorem 3.1. Once we establish a similar result as that of Lemma A.3, we can prove
Theorem 3.1. In addition, we can prove Lemmas A.4-A.6 which confirms |'?g - 72| = O0,((NT)™') and
ég = 0, 4+ 0,((NT)~'/2). In the following analysis, we give a sketch of the proof of Theorem 3.1 in the
fixed-threshold-effect framework.

To proceed, we add some notations. Define

N T

- 1 ~

Mn1(9,9,G) = NT Z Z g = 9)l(g:i = 9)E [($2t5g)2|72] 5
i=1t=1

where E(]7) = E(:|¢;+ = 7). We impose an additional identification condition:
Assumption E.1. As (N,T) — oo, the following statements hold: (i) For some constants ¢ > 0 and o > 0,

we have

ST Ea() 0 — Zu(v) 07 <

t=1

sup sup sup Pr
1<i<N (81,0%)€B2 |y—~*|>7/T

2 . .
cz [(6 = 6")Zi(v)]" + Iy —v'| E [(wéﬁ)zv]] } = o(T™");
(ii) There exists a constant ¢y > 0 such that for all g € G,

€GN xI'G geg

Pr <(G D)lnf max{)\mm[MNT(g gaD G)] A MNT(g 97 )} > QA) - 17

(iii) For all g,§ € G, where g # §, we have [|(69,79)" = (69',79)'|| > ¢ for some constant ¢4 > 0;
(iv) For any g # g and 1 <+i¢ < N, we have

max (E[Z:(79)' (05 — 0%, |72 — 2| E [(2,60)%v3])

Il
1o

for some constant Qgg > 0.

Assumption E.1 (i) is a non-colinearity condition similar to Assumption A.4(ii) in the main text. How-
ever, it requires that the non-colinearity property should hold for each individual. Assumption E.1(ii) is
modified from Assumption A.2. Assumption E.1(iii)-(iv) is modified from Assumption A.3(i)-(ii). As re-
marked in Section 3.1, E.1(iv) is redundant if we assume that Amin(E[Zit(7))Zi(79)']) and 52/E(:Eitx;t\’yg)5g
are bounded below from zero by a constant ¢, say.

Below we prove Theorem 3.1 under Assumptions A.1, A.3(iii)-(iv) and E.1.

Proof of Theorem 3.1. Lemma A.1 still holds under the stated conditions. Lemmas A.2-A.3 are replaced
by Lemmas E.1 and E.2 below. Combining Lemmas E.1-E.2 we have the desired claim. B
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Lemma E.1. Suppose that Assumptions A.1, A.3(iii)-(iv) and E.1 hold. Then we have dH((é, f)), (0%, DY) 2

0, where
’Ag A —’ygi , max | min ‘Ag A f’yQ| .
9 g 736G \ g€C g g

Proof of Lemma E.1. It suffices to show (i) max,eg (mlngeg H 72\) = 0,(1) and (ii)

maxgeg (mmgeg H 'yg|) = o,(1).
We first show (i). By Lemma A.1, we have

9€G \ geg

dy((6,D), (0%, D) = max {max (min

1 o o~ A 1 P 1
WQ(@,D,G) = WQ(@,D,G,)+op(1)gﬁg(@O,DO,Gﬂ)+o,,(1)

1 .
- WQ(@O,DO,GO)+OP(1),

where the inequality holds by the definition of least squares estimator. On the other hand, noting that
Q(0,D,G) is minimized at (6°,D° G°), we have W[Q(@ D,G) — 9(8°, D GY%)] > 0. It follows that
ﬁ[@(é,f), G) - 9(8°,D° GY)] = 0,(1). By direct calculation, we have uniformly in (6, D, G),

—
~

Wi
3l
M=
MH
?
=
=
_l’_
%|°
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‘ST
X

where the inequality holds by Assumption E.1(i) and the last equation is by the definitions of My7(g, g, D, G)
and Myr7(g,§, G). It follows that

Ma

op(1)

I
o

4 1190
Q TMQ n

|:(02 - 05)/MNT(!J’§7 D, G)(eg - 9(3) + ‘ryf} - 72| MNT(gvga G):| + Op(l)

Y
o

{)\min[MNT(g gaDa G)] A MNT(gaga G)} (H92 - 9§||2 + |’Y_Z] - ’72|> + OP(]')

Q
Il
-

Z Cr;leagxg { min MNT g, g7D G)]/\MNT<g7gu G)} (}’02_9§H2+}7§_72}) +OP(1)
2 ¢ -
> cmax (Igneg 65 = 8[| + s - m) ; {Auin[Mn1(9. 3D, G) A My (9,5,G) } + 0p(1)
. 0
> ccy max (Ignég G ’)/g|> +0,(1),
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where the last inequality is by Assumption E.1(ii) which says that there exists a group §* € G such that
{Amin[MNT(g,g, D,G)| A Myr(g, 3§, G)} > ¢, > 0 w.p.a.1l. Consequently, we have

max r}lin” 2
9€G \ g€g

~0) =0 0.

To show (ii), we can follow a similar analysis given in the proof of Lemma A.2. The details are omitted here.
|}

R 2

Remark. The proof of Lemma E.1 shows that there exists a permutation og such that HGQ — HSQ(Q)H +

bg —VSQ(Q)) = 0p(1). We can take og(g) = g by relabeling. In the following analysis, we shall write
R 2

HQg - Hgé(g) H + "/g - ’Yg@(g)‘ = 0p(1) without referring to the relabeling any more.

Lemma E.2. Let §;(0,D) = argmin S (G — Zae (7,)'0 ] Suppose that Assumptions A.1, A.3(iii)-
(iv) and E.1 hold. Then we have that for some 7 > 0,

Pr( sup [ Zl (0,D) #gﬂ]) =o(T™%),
(©,D)eN,

where A, = {(6,D) € B9 x 1% : |6, — 63" + |y, = 9| <, g € G}

Proof of Lemma E.2. The proof is similar to that of Lemma A.3 except the details of bounding Z;,(©, D),

where
T

2i4(©,D) = 1(g; # )1 (Z[ﬂzt = Zit(19) 00)]° <Y liiae — 2#(79?)/09?]2) :

t=1 t=1
For Z,,(©,D), we have

Z:4(0,D) < max 1(L;(g,9) <0),
4(©,D) jomax (Li(g,9) <0)

where

T
1 . N - N -
Z Zie (7 Zzt(’Yg) ¢ ] {§[Zit(’)/g)/9§ - Zit(’Yg)leg] + it + zit(vg)’ﬁg - Zz‘t(’Yg)/eg} .

Then we can follow the analysis of Lemma A.3 to show that

T
i N 1 i N
W@Dﬁzgﬁﬁ{gkﬂﬁﬁ—ﬁﬁﬁw{PMWQ—%WQM+%}SW*E&m

where Hyr = C\/n Zle(||xit||2 +¢2) for some constant C' > 0. Next, we can use the Assumption E.1(i) to
show that

T
~ c 2
Pr(zZ, = 1)< Z Pr {5 Z 90 Y Zit ’yq ] + "yg — 72’ E [(wét63)2|72]
g€G\{g} t=1
T
+Z[zzt(7g) 05 — Zzt('Yg) 90]5” < HzT} +o(T™Y).
t=1

Then one can use Assumption E.1(iv) and similar arguments as used in the proof of Lemma A.3 to show
that the leading term on the right hand side of the last inequality is o(7"~*). The result then follows from
the Markov inequality as used in the proof of Lemma A.3. .
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