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This supplement is composed of four parts. Section B contains the proofs of Lemmas A.-A.8 in the above

paper. Section C contains the full analysis of the infeasible estimators. Section D provides some additional

assumptions for the determination of the true number of groups and a new proposition. Section E studies

the consistency of the panel threshold estimators in the framework of fixed threshold effects.

B Proof of Lemmas A.1-A.8 in Appendix A

Proof of Lemma A.1. Note that
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It suffices to show that the second term in the last line is (1) uniformly in (ΘDG) ∈ B × Γ × G .
For each  ∈ G, we have
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Following similar arguments used in the proof of Lemma A.3 in Hansen (2000), we can show that
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where the inequality holds by the definition of least squares estimator. On the other hand, noting that

Q̃(ΘDG) is minimized at (Θ0D0G0), we have 1

[Q̃(Θ̂ D̂ Ĝ) − Q̃(Θ0D0G0)] ≥ 0 It follows that
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[Q̃(Θ̂ D̂ Ĝ)− Q̃(Θ0D0G0)] = (1) By direct calculation, we have uniformly in (ΘDG)
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where the last equality follows from the fact that sup
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By the definition of  ( ̃DG) in section 3.1, we have
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It suffices to show that (i1) 1
→ (0Ω01) and (i2) 2 =

q



B +  (1)  To prove (i1), we relabel

the index G0
 = {1  

} to {1 }. Let  denote a 2 × 1 nonrandom vector with kk = 1 For

 = (−1) +  for  = 1   and  = 1   let  =
h
(

0
)− 1



P
=1((

0
))
i
. Let  = 

Then we have

01 =
1√


X
=1

0

Immediately, {}=1 is a martingale difference sequence (m.d.s.) under the filtration F = ({ : 1 ≤
 ≤ }) the minimal sigma-field generated from { : 1 ≤  ≤ }. Apparently, max1≤≤  kk4 ≤ 

for some  ∞ under Assumption A.1. In addition,

1



X
=1

0
0


= 0
1



X
∈G0



X
=1

̃(
0
)̃(

0
)
02

+0
1



X
∈G0



X
=1

2

"
2(

0
)−

1



X
=1

{(0)−[(
0
)]}

#"
1



X
=1

{(0)−[(
0
)}0

#


≡ 11 +12

9



By Assumption A.6, 11
→ 0Ω1(0 0) For 12, we have by Cauchy-Schwarz and Markov inequalities

|12| ≤ kk2
⎛⎝ 1



X
∈0



X
=1

4

°°°°°
"
2(

0
)−

1



X
=1

{(0) +[(
0
)]}

#°°°°°
2
⎞⎠12

×
⎛⎝ 1



X
∈0



X
=1

°°°°° 1
X
=1

{(0)−[(
0
)}
°°°°°
2
⎞⎠12

=  (1)

³
−12

´
=  (1) 

Then 1
→ (0Ω1(

0
 

0
)) by the Cramér-Wold device and the martingale central limit theorem.

Next, we consider 2. Note that

2 =
1


p


X
∈G0



X
=1


£
(

0
)

¤
+

1


p


X
∈G0



X
=1

©¡
(

0
)−[(

0
)]
¢
 −

£
(

0
)

¤ª
≡ 21 +22.

For 21, we have 21 =
q




1



P
∈G0



P
=1

P


£
(

0
)

¤
=
q




B  For 22 we can easily

verify that (22) = 0 and

 k22k2 = 1

 3

X
∈G0





°°°°°
X

=1

£{(0)−[(
0
)]} −

£
(

0
)

¤¤°°°°°
2

= 
¡
−1

¢
by using the Davydov inequality for strong mixing processes. Then 22 = (

−12) and (i2) follows.
(ii) Now, let  ≡ (

0
)
0M0

p
 . Then we have  independent across  and

 kk2 =
1



X
=1

X
=1


¡
̃(

0
)̃(

0
)
0

¢
≤ 1



X
=1

X
=1

6[|− |]12 °°̃(0)°°4 °°̃(0)°°4
= (1)

By Theorem A of Yang (2016), we have max kk2+ ≤ ()
−(2+)2maxmax1≤≤

°°̃(0)°°2+2
for some   0 and   ∞. Here k·k = { k·k}1. Then Lindeberg condition holds and we have the
desired claim. ¥

C Supplementary Lemmas

We first state a technical lemma that is also used in the proof the main results in the paper. Then we study

the asymptotic properties of the infeasible estimators.

C.1 A technical lemma

Lemma C.1. Let  denote a  × 1 random vector with mean zero and  kk8+  ∞ for some   0.

Suppose that {  = 1  } is strong mixing process with mixing coefficients  [] ≤ 
 for some   0

10



and  ∈ (0 1). Then as  →∞ and for any   0 we have

Pr

Ã°°°°° 1
X
=1



°°°°°  

!
= (−4)

Proof of Lemma C.1. The proof is similar to and simpler than that of Lemma B.1(ii) in Wang, Phillips,

and Su (2018) and thus omitted. ¥

C.2 Asymptotic properties of the infeasible estimators

We present the analysis of infeasible estimator in this section.

Lemma C.2. Suppose Assumptions A.1, A.3(iv) and A.4 hold. For any  ∈ G, we have that

̌ − 0 = (1) and ̌ − 0 = (( )−)

Proof of Lemma C.2. First, we show the convergence rate of ̌() for any  ∈ Γ. Let () ≡
([01 

0
11()]

0  [0  
0
 ()]

0)0 a ×2 matrix. Let(1 2) ≡ (1[1(1)−1(2)]   [ (1)
− (2)])0 a × matrix. By the definition of ̌(), we have ̌() = [

P
∈G0


()

0M0()]
−1P

∈G0

()

0

M0. It follows that

̌()− 0 = [Φ1()]
−1 1



X
∈G0



()
0M0 − [Φ1()]−1Φ2()0 (C.1)

where Φ1() ≡ 1


P
∈G0


()

0M0(), Φ2() =
1



P
∈G0


()

0M0( 
0
) By Assumption A.4(i),

Φ1() = (1) for all  ∈ Γ. It is standard to show that 1


P
∈G0


()

0M0 = (( )−12+−1) and

Φ2() = (1). Then we have ̌()−0 = (( )−+−1) by exploiting the fact that 0 = ((( )−).
Given the fact that   13 and  = ( 2), we can conclude from (C.1) that ̌() − 0 = (( )−)
and

̌()− 0 = − [Φ1()]−1Φ2()0 + (( )−) (C.2)

Next we show the consistency of ̌. Let Φ3() =
1



P
∈G0


( 

0
)
0M0( 

0
). By direct calcu-

lations, we can show that

1



¡Q̌(̌ ̌)− Q̌(
0
 

0
)
¢

= 00 Φ3(̌)
0
 + (̌ − 0)

0Φ1(̌)(̌ − 0) + 2(̌ − 0)
0Φ2(̌)

0


−(̌ − 0)
0 2



X
∈G0



(̌)
0M0 − ̌

0


2



X
∈G0



(̌ 
0
)
0M0 (C.3)

Note that the last two terms on the right hand side (RHS) of the above equation are (( )−2). This, in
conjunction with (C.2) and (C.3) implies that,

1



¡Q̌(̌ ̌)− Q̌(
0
 

0
)
¢
= 00 [Φ3(̌)−Φ2(̌)0Φ1(̌)−1Φ2(̌)]0 + (( )−2)

By Assumption A.4(ii), we have that

Φ3(̌)−Φ2(̌)0Φ1(̌)−1Φ2(̌) = ̃(̌)

11



which is a  ×  matrix with minimum eigenvalue min[̃(̌)] ≥  min{1 ¯̄̌ − 0
¯̄} w.p.a.1. Hence it

follows that

( )
2−1 ¡Q̌(̌ ̌)− Q̌(

0
 

0
)
¢ ≥ 2

°°0°°  min{1 ¯̄̌ − 0
¯̄}+ (1)

where we use the fact 0 = ( )− and  →  by Assumptions A.1(vi) and A.2(iii). On the other

hand, we have Q̌(̌ ̌)− Q̌(̌ 
0
) ≤ 0 We can conclude that ̌ − 0 = (1).

Given the consistency of ̌, we can easily show that
1



P
∈G0


(̌)

0M0(
0
 ̌) = (1). Then

̌ − 0 = (( )−) follows. ¥

Lemma C.3. Let (1 2) = kk |(2)− (1)| and (1 2) = kk |(2)− (1)|. Sup-
pose Assumptions A.1(v) and A.5 hold, there is a constant 1  ∞ such that for ≤ 1  2 ≤  and

 ≤ 4,
max


 [(1 2)]
 ≤ 1 |2 − 1| and max


 [(1 2)]

 ≤ 1 |2 − 1| 

Proof of Lemma C.3. For any random variable 

 [()] = ( · 1{ ≤ }) =  [1{ ≤ }(|)] =
Z 

−∞
(|)()

where  (·) is the cumulative distribution function (CDF) of  with the corresponding PDF (·) Taking
derivative with respect to  on both sides yields




 [()] = (| = )()

Then by the Hölder inequality and Assumptions A.1(v) and A.5




 [kk ()] = (kk | = )() ≤ [(kk4 | = )]4()

≤  for some  ∞

This implies that

max


 [(1 2)]
 ≤ 1 |2 − 1| with 1 =  

Analogously, we have max [(1 2)]
 ≤ 1 |2 − 1|  ¥

Lemma C.4. Suppose Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then there exists a constant

2 ∞ such that for all ≤ 1  2 ≤  and  ∈ G



¯̄̄̄
¯̄ 1p



X
∈G0



X
=1

¡
2(1 2)−2(1 2)

¢¯̄̄̄¯̄
2

≤ 2 |2 − 1| 



¯̄̄̄
¯̄ 1p



X
∈G0



X
=1

¡
2(1 2)−2(1 2)

¢¯̄̄̄¯̄
2

≤ 2 |2 − 1| 

Proof of Lemma C.4. For notational simplicity, let (1 2) = [(1 2)]

for  ≥ 0 By the indepen-

12



dence across  and strong mixing over  for {(  )}, there is a constant † such that



¯̄̄̄
¯̄ 1p



X
∈G0



X
=1

©
2(1 2)−[2(1 2)]

ª¯̄̄̄¯̄
2

=
1



X
∈G0





¯̄̄̄
¯ 1√

X
=1

©
2(1 2)−[2(1 2)]

ª¯̄̄̄¯
2

≤ †



X
∈G0



1



X
=1


©
2(1 2)−

£
2(1 2)

¤ª2
≤ †



X
∈G0



X
=1


£
4(1 2)

¤ ≤ †1 |2 − 1| 

The first result follows by setting 2 = †1 Analogously, we can prove the second result in the lemma. ¥

Lemma C.5. Let  () = 
−12
 −12

P
∈G0



P
=1 (). Suppose Assumptions A.1, A.3(iii)—

(iv) and A.4—A.5 hold, there are constants 1 and 2 such that for all ,  ∈ G   0,   0 and

 ≥ ( )
−1, if

p
 ≥ 2, then

Pr

Ã
sup

0≤≤0+
| ()−  (

0)|  

!
≤ 1

2

4


Proof of Lemma C.5. The proof is similar to that of Lemma A.3 in Hansen (2000). ¥

Lemma C.6. Suppose Assumptions A.1, A.3(iii)—(iv) and A.4—A.6 hold, we have for  ∈ G,

 ()⇒ ()

a mean-zero Gaussian process with almost surely continuous sample paths.

Proof of Lemma C.6. The proof is similar to that of Lemma A.4 of Hansen (2000). ¥

Lemma C.7. Let  () =
1



P
∈G0



P
=1

00
 

0


0
 [()− (

0
)] and  () =

1


P
∈G0

P
=1 kk

¯̄
()− (

0
)
¯̄
. Under Assumptions A.1, A.3(iii)—(iv) and A.4—A.5, there exist constants  

0, 0   ∞, such that for all   0 and   0, there exists a  ∞ such that for all ( ) and  ∈ G,

Pr

Ã
inf

≤|−0|≤
 ()¯̄
 − 0

¯̄  (1− )

!
≤ 

Pr

⎛⎝ sup
≤|−0|≤

 ()¯̄
 − 0

¯̄  (1 + )

⎞⎠ ≤ 

Proof of Lemma C.7. The proof is similar to that of Lemma A.7 of Hansen (2000). ¥

Lemma C.8: Under Assumptions A.1, A.3(iii)—(iv) and A.4—A.5, there exists some   ∞ such that for

any  ∞ and  = 1  

Pr

⎛⎝ sup
≤|−0|≤

¯̄
 ()−  (

0
)
¯̄

√


¯̄
 − 0

¯̄  

⎞⎠ ≤ 

13



Proof of Lemma C.8. The proof is similar to that of Lemma A.8 of Hansen (2000). ¥

Lemma C.9. Let ̃ () = −1

P
∈G0



h
−1

P
=1 kk

¯̄
()− (

0
)
¯̄i2

and ̃ () =


−12
 −32

P
∈G0



P
=1

P
=1 (()−(0)). Suppose Assumptions A.1, A.3(iii)—(iv) and A.4—A.5

hold. Then there exists some  ∞ and   0 such that for any   0   0 and  ∈ G,

Pr

⎛⎝ sup
≤|−0|≤

¯̄̄
̃ ()

¯̄̄
√


¯̄
 − 0

¯̄  

⎞⎠ ≤  and Pr

⎛⎝ sup
≤|−0|≤

¯̄̄
̃ ()

¯̄̄
¯̄
 − 0

¯̄  

⎞⎠ ≤ 

Proof of Lemma C.9. The analysis for the first result is analogous to that of Lemma C.8. For the second

result, we consider the case   0. Letting () = ( 
0
) = kk

¯̄
()− (

0
)
¯̄
 we have

[̃ ()] = −1

X
∈G0





"
−1

X
=1

kk
¯̄
()− (

0
)
¯̄#2

= −1

X
∈G0





"
−1

X
=1

()

#2

= −1

X
∈G0



Var

"
−1

X
=1

()

#2
+−1

X
∈G0



Ã
1



X
=1

[()]

!2

≤ †−1

X
∈G0



−2
X
=1


£
()

2
¤
+−1

X
∈G0



Ã
1



X
=1

[()]

!2

≤ †1


¯̄
 − 0

¯̄
+ 21

¯̄
 − 0

¯̄2


where the first inequality follow from the fact that Var
h
−1

P
=1 ()

i2
≤ †−2

P
=1Var[()] ≤

†−2
P

=1[()]
2 for some †  ∞ by using the fact that {()  ≥ 1} is also a strong mixing

process, and the last inequality follows from Lemma C.2.

First we consider the case  − 0  0. Choose a   1   ( − 1)(4213) and  such that

  . We set  = 0 + −1 for  = 1   + 1 such that  + 1 ≥  and  ≤ . Since



≤ ,  ≤ log( ). When ( ) is large enough„ we can have †1




≤ 4. Then we can

calculate

Pr

Ã
sup
1≤≤

̃ (+1)¯̄
 − 0

¯̄  

!
≤

X
=1

[̃ (+1)]


¯̄
 − 0

¯̄
≤

X
=1

†1
¯̄
+1 − 0

¯̄



¯̄
 − 0

¯̄ +
X
=1

21
¯̄
+1 − 0

¯̄2

¯̄
 − 0

¯̄
=

†1





+

21
2



(+1 − 1)
 (− 1)

≤ †1





+

21
3





(− 1)  2

For any  ∈ [0 +   
0
 +], there exists a  ∈ {1  } such that  ≤  ≤ +1. In view of the fact

that ̃ () is monotonic in , we have
̃ ()

|−0| ≤
̃ (+1)

|−0| . It follows that

Pr

⎛⎝ sup
≤−0≤

¯̄̄
̃ ()

¯̄̄
¯̄
 − 0

¯̄  

⎞⎠ ≤ PrÃ sup
1≤≤

̃ (+1)¯̄
 − 0

¯̄  

!
≤ 2
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A symmetric argument gives us the proof for the case − ≤  − 0 ≤ − . This completes our proof.

¥

Lemma C.10. Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then we have  (̌ −
0) = (1) for all  ∈ G.
Proof of Lemma C.10: Let    be the coefficients defined in Lemma C.6-C.8 and  =

°°0°°  Pick an
 such that min{1  }    0 and 2 (1− ) − 24  − 2 (6 + 4

2)  0 Let E be the joint

event that, for all  ∈ G: ¯̄̌ − 0
¯̄ ≤ , ( )

°°̌ − 0
°° ≤ , ( )

°°̌ − 0
°° ≤ ,

inf
≤|−0|≤

 ()¯̄
 − 0

¯̄ ≥ (1− )

sup
≤|−0|≤

 ()¯̄
 − 0

¯̄ ≤ (1 + )

sup
≤|−0|≤

¯̄
 ()−  (

0
)
¯̄

√


¯̄
 − 0

¯̄ ≤ 

sup
≤|−0|≤

¯̄̄
̃ ()

¯̄̄
√


¯̄
 − 0

¯̄ ≤ 

sup
≤|−0|≤

̃ ()¯̄
 − 0

¯̄ ≤ 

Then by Lemma C.7-C.9.Let( 
0
) ≡ (1[1()−1(0)]   [ ()− (0)])0 a × matrix. Let

∆X ≡ X( 
0
) ≡

©
( 

0
)  ∈ G0



ª
 which is an  × matrix. Let () ≡ ([01 011()]0 

[0  
0
 ()]

0)0 a  × 2 matrix. Let Z() ≡
©
()  ∈ G0



ª
 which is an  × 2 matrix. Let

∆X = (
⊗ P0)∆X , and Z(

0
) = (

⊗ P0)Z(0) where recall that P0 = −1 0 . Let  =
(1   )

0 and ε =
©
  ∈ G0



ª
 an  × 1 vector.

̌ ( )− ̌ ( 
0
) = 0∆X0

(
⊗M0)∆X − 20∆X0

(
⊗M0)Z(

0
)( − 0)

+20∆X0
(

⊗M0)ε

= 00 ∆X
0
∆X

0


0
 + ( − 0)

0∆X0
∆X( + 0)− 0∆X∆X

−20∆X0
Z(

0
)( − 0) + 2

0∆X
0
Z(

0
)( − 0) + 2

0∆X0
ε

−20∆X0
ε

Let ̌ = ( )− for some  such that
°° − 0

°° ≤  implied by E . Suppose that E happens

15



and for  ∈ [0 +   
0
 +], we have

( )
2−1 ̌ (̌ )− ̌ (̌ 

0
)¯̄

 − 0
¯̄

=
2 00 ∆X0

∆X
0



¯̄
 − 0

¯̄ +
2 ( + 0 )

0∆X0
∆X( − 0 )

( )
¯̄
 − 0

¯̄ − 2  0∆X∆X

( )
¯̄
 − 0

¯̄
−2


0


h
∆X0

Z(
0
)−∆X

0
Z(

0
)
i
( )

(̌ − 0)

( )
¯̄
 − 0

¯̄ + 2
°°

°° ∆X0
ε −∆X

0
ε

( )1−
¯̄
 − 0

¯̄
≥ 2  ()¯̄

 − 0
¯̄ − 2 (

°°0°°+ °°0°°)°° − 0
°°  ()¯̄

 − 0
¯̄ − 2 kk2 ̃ ()¯̄

 − 0
¯̄

−4 kk ( )

°°̌ − 0

°°  () + ̃ ()¯̄
 − 0

¯̄ − 2°°

°° ¯̄ ()−  (
0
)
¯̄

√


¯̄
 − 0

¯̄
−2°°

°°
¯̄̄
̃ ()

¯̄̄
√


¯̄
 − 0

¯̄
≥ 2 (1− )− 2 (2+ )(1 + ) − 2 (+ )2 − 4 (+ )[(1 + ) + ]

−4 (+ )

 2 (1− )− 24  − 2 (6 + 4
2)

 0

which indicates that ̌ does not belong to [
0
 +   

0
 +]. A symmetric argument shows that if E

happens ̌ does not belong to [
0
 − 0 −   ]. Hence, we have shown ̌ − 0 = (1 ) for all

 ∈ G. ¥
Lemma C.11. Let ∗ () =  (

0
 +  ) and ∗ () =  (

0
 +  ).

Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then we have that uniformly in  ∈ Ψ,

∗ ()
→  ||  and ∗ ()

→ 0
 ||

where  = 00 0


0
 for  ∈ G and Ψ is a compact set.

Proof of Lemma C.11. The proof is similar to that of Lemma A.10 in Hansen (2000). ¥

Lemma C.12. Let  () =
√


£
 (

0
 +  )−  (

0
)
¤
 Suppose that Assumptions

A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then on any compact set Ψ

 ()⇒ ()

where () is a vector Brownian motion with covariance matrix  [(1)(1)
0] =  0

 

Proof of Lemma C.12. First, we show the convergence of finite dimensional distribution:  ()
→

(0  0
 ). Let () ≡ 1√



P
=1 

√
 [(

0
 +  ) − (

0
)] and F = ({()  ≤ }).

By Assumption A.1(ii) and Liapunov’s central limit theorem (e..g., Theorem 23.11 of Davidson (1994, pp.372-

373), it suffices to verify thatX
∈G0



()()
0 → || 0

 and
X
∈G0



k()k4 = (1)

16



Note thatX
∈G0



()()
0 =





X
∈G0



X
=1


0


2


¯̄
(

0
 +  )− (

0
)
¯̄

+




X
∈G0



X
1≤6=≤


0
[(

0
 +  )− (

0
)][(

0
 +  )− (

0
)]

≡  + 

For   we can conduct similar calculations as used in the proof of Lemma C.3 to obtain


£


0


2


¯̄
(

0
 +  )− (

0
)
¯̄¤



→ (
0


2
| = 0)

Then we can readily show  → || 0
 by using the Chebyshev inequality and the fact that {(  )}

is independent across  and strong mixing along the time dimension. Let  = [(
0
 +  ) −

(
0
)] For   we have for any  × 1 nonrandom vector  with kk = 1 we have

| [0 ]| =




¯̄̄̄
¯̄ X
∈G0



X
1≤6=≤

Cov(0 
0)

¯̄̄̄
¯̄ ≤ 



X
∈G0



−1X
=1

0X
=+1

|Cov(0 0)|

=




X
∈G0



X
0|−|≤0

|Cov(0 0)|+




X
∈G0



X
|−|0

|Cov(0 0)|

≤ 20 max


max
0|−|≤0

|Cov(01 02)|+




X
∈G0



{ [0]}(3+0)(4+0)max


kk28+0

≤ 0(
¡


¢−2
) +  

0(3+0)(4+0) =  (1)

provided 0 is chosen such that 0 = ( ) and 0(ln )
0 → ∞ for some constant 0  1 This

implies that  [ ] = (1) In addition, it is easy to verify that Var[0 ] =  (1)  Then we have

 =  (1). Consequently,
P

∈G0

()()

0 → || 0
 

Now, we verify that
P

∈G0

k()k4 = (1) Note that

X
∈G0



 [0()]
4
=

2

( )
2

X
∈G0





¯̄̄̄
¯0

X
=1



¯̄̄̄
¯
4

=
2

( )
2

X
∈G0



X
=1

 (0)
4
+  (1)

= ( ( )
−1) +  (1) =  (1) 

where the second equality follows from the simple application of the Davydov inequality for strong mixing

processes and similar arguments as used in the analysis of   Then
P

∈G0

k()k4 = (1) by Markov

inequality. Then the pointwise distributional result follows.

For the stochastic equicontinuity, the proof procedure is similar to that in Hansen (2000) and thus

omitted. ¥

Lemma C.13. Let ̃∗ () =  ̃ (
0
 +  ) and ̃∗ () =  ̃ (

0
 +  ).

Suppose that Assumptions A.1, A.3(iii)-(iv) and A.4—A.5 hold. Then ̃∗ ()
→ 0 and ̃∗ ()

→
0 uniformly in  ∈ Ψ, where Ψ is a compact set.
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Proof of Lemma C.13. By the proof of Lemma C.9, we have

[̃∗ ()] = 

µ
1



¯̄


¯̄
+
¯̄


¯̄2¶
=  (1) 

Let () = −1
P

=1 (), where () = kk
¯̄
(

0
 +  )− (

0
)
¯̄
 Let ̃() = () −

[()] Then

Var(̃∗ ()) = 2


⎡⎢⎣
¯̄̄̄
¯̄−1

X
∈0



{()2 −[()
2]}
¯̄̄̄
¯̄
2
⎤⎥⎦ = 2

2


X
∈0



{()2 −[()
2]}2

≤ 2

2


X
∈G0





"
−1

X
=1

()

#4

≤ 82

2


X
∈G0





"
−1

X
=1

̃()

#4
+
82

2


X
∈0





"
−1

X
=1

 [()]

#4

≤ 2

2


4

X
∈G0



⎧⎨⎩
X
=1

 [̃()]
4 +

Ã
X
=1

 [̃()]
2

!2⎫⎬⎭+  (1) +(−1 −2
)

= 
¡


−1
 −3 +−1 −2

¢
+  (1) =  (1) 

where the first equality follows from the Jensen inequality, the second inequality follows from the  in-

equality, the third one follows from the repeated application of Davydov inequality and the fact that

max [()] = (−1
) and the next to last equality holds by the moment calculations. Then

̃∗ () =  (1) for each  ∈ Ψ This result, in conjunction with the monotonicity of ̃∗ () in ei-

ther the half line [0∞) or the half line (−∞ 0] implies that ̃∗ ()
→ 0 uniformly in  ∈ Ψ. See Hansen

(2000, p. 598).

For ̃∗ () we can follow the above arguments and show that ̃∗ () =  (1) for each  ∈ Ψ
Following Lemma A.11 in Hansen (2000), we can readily show the tightness of the process {̃∗ ()} As a
result, we have ̃∗ ()

→ 0 uniformly in  ∈ Ψ. ¥
Lemma C.14. Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then on any compact set

Ψ,

∗ ()⇒ −2  ||+ 2
q
2 () =





Ã
−

2
 2



||+ 2(
2 2



)

!
,

where  = 00  0
 

0
 .

Proof of Lemma C.14. Let (
0
 +   

0
) = [1[1(

0
 +  ) − 1(

0
)]   [ (

0
 +

 )−  (
0
)]]

0. We have

∗ () = ̌(̌ 
0
)− ̌(̌ 

0
 +  )

= −
X
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0
 + 2

X
∈G0



00 (
0
 +   

0
)
0

+ ()
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where

 () = 2( )
(̌ − 0)

0∗ ()− 2( )
̌
0

∗
 ()( )

(̌ − 0)

−( )
(̌ − 0)

0∗ ()( )
(̌ + 0) + ( )

̌
0
̃
∗
 ()( )

̌

+2( )
̌
0
̃
∗
 ()− 2̌

0


X
∈0



(
0
 +   

0
)
0M0(

0
)(̌ − 0)

≡ 1 () + + 6 ()

By Lemma C.10, we haveX
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0


= ( )−2
X
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0


= (



)2





X
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0


= (



)2∗ ()⇒ 2  || 

By Lemma C.11, we haveX
∈G0



00 (
0
 +   

0
)
0 = ( )−

X
∈G0



00 (
0
 +   

0
)
0

= (



)( )

12−00
£
 (

0
 +  )−  (

0
)
¤

= (



) ()

⇒ 
00
 () = 

√
()

By the fact that ( )(̌ − 0) =  (1)  Assumption A.1(vi), and Lemma C.10, we have  () =

(1) uniformly in  for  = 1 2 3 4. By Lemma C.12 we have that 5 () = (1) uniformly in . For

6 (), we have

|6 ()| ≤ 2
©
( )


°°̌°°ª©( )


°°̌ − 0

°°ª 



°°°°°°
X
∈0



(
0
 +   

0
)
0M0(

0
)

°°°°°°
=  (1)  (1) (1) =  (1) uniformly in  ∈ Ψ

as we can follow the proofs of Lemmas C.10 and C.12 and show that



||P∈0


(

0
+  

0
)
0M0(

0
)||

=  (1) uniformly in  ∈ Ψ Consequently, we have ∗ ()⇒ −2  ||+ 2
q
2 () on any

compact set Ψ ¥

D Determination of the Number of Groups

Recall that ̂2() ≡ 1

Q(Θ̂() D̂() Ĝ()) Let ̄2 ≡ 1



P
=1

P
=1 

2
 In the estimation, we require

each group to contain at least bc individuals. We denote the index set of members in group  as G,
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where G ∈ G = {G̃, |G̃|  bc} for all  ∈ G. Let ̂ = |G|  We can define five empirical processes
that depend on G:

(G ) =
1

̂

X
∈G

()
0M0 ∆(G  

∗) =
1

̂

X
∈G

( 
∗)0M0

Φ1(G ) =
1

̂

X
∈G

()
0M0(), Φ2(G  

∗) =
1

̂

X
∈G

()
0M0( 

∗) and

Φ3(G  
∗) =

1

̂

X
∈G

( 
∗)0M0( 

∗)

LetG be any possible group structure when the number of groups in {1 2 } is given by We assume
the following conditions hold for the empirical processes.

Assumption D.1. (i) Pr
¡
inf(G)∈×Γ min [Φ1(G )] ≥ 

¢→ 1 as ( )→∞ for some   0;

(ii) Pr
¡
infG∈ inf |−∗|̄ min

£
Φ3(G  

∗)−Φ2(G  
∗)0Φ1(G )

−1Φ2(G  
∗)
¤
 | − ∗| ≥ 

¢
→ 1 as ( )→∞ for some   0 and ̄  0;

(iii) Pr
³
supG∈ sup|−∗|̄ kΦ(G  

∗)k  | − ∗| ≤ 
´
→ 1 for  = 2 3 as ( )→∞ for some

  0;

(iv) Pr
³
sup(G)∈×Γ k(G )k ≤ −12

´
→ 1 for some   0;

(v) Pr
³
supG∈ sup|−∗|̄ k∆(G  

∗)k  | − ∗| ≤ −12
´
→ 1 for some   0 and ̄  0

Assumption D.2. (i) As ( )→∞,min1≤0 minG ̂2G

→ ̄2  2 where 2 ≡ lim( )→∞( )−1P
=1

P
=1

¡
2
¢


(ii)  → 0 and  →∞ as ( )→∞.
Assumption D.1(i)-(iii) requires the sample covariance matrices are well behaved for any subset of in-

dividuals. Assumption D.1(iv) is the assumption that plays the most important role in our analysis. It

requires sup(G)∈×Γ k(G )k = (
−12) for all (G ) ∈ G × Γ. For the true group members

G0
, we can show that (G

0
 ) = (( )−12) under some regularity conditions. However when we are

estimating the model with   0 it is possible that
°°°(Ĝ )

°°° = (
−12). Similar remarks hold for

D.1(v). Assumption D.2 specifies the usual condition for the consistency of an information criterion. In

particular, Assumption D.2(i) in conjunction with the first part of D.2(ii) helps to eliminate all underfitted

models and the second part of D.2(ii) helps to eliminate the overfitted models.

Proposition D.1 Suppose Assumptions A.1-A.5 in the text and Assumption D.1 hold. The following state-

ment holds:

̂2()− ̄2 = (
−1) for any 0 ≤  ≤ max

Remark. The probability order (
−1) in the above proposition is not a conservative order. To illustrate

this point, we consider a simple regression where  = + so that there is only one group. If we estimate
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the model with  = 2, we have

0 ≥ 
£
̂2(2)− ̄2

¤
=
1



2X
=1

X
∈Ĝ

X
=1

⎛⎝ − 1

̂

X
∈Ĝ

X
=1



⎞⎠2

− 1



X
=1

X
=1

2

=
1



2X
=1

X
∈Ĝ

X
=1

⎛⎝ − 1

̂

X
∈Ĝ

X
=1



⎞⎠2

− 1



X
=1

X
=1

2

= −
2X

=1

̂



⎛⎝ 1

̂

X
∈Ĝ

̄·

⎞⎠2

≤ −
2X

=1

̃



⎛⎝√
̃

X
∈G̃

̄·

⎞⎠2



where ̄· = 1


P
=1  G̃1 = {|̄· ≤ 0} G̃2 = {|̄·  0} ̃ =

¯̄̄
G̃

¯̄̄
 and the last inequality holds by the

definitions of {Ĝ} and ̂2(2) [Note that ̂2(2) is minimized at (Ĝ1 Ĝ2).] Without loss of generality, we

suppose that  is i.i.d.  (0 1) over both  and . Then  ≡
√
 ̄· v  (0 1) and by the strong law of

large numbers¯̄̄̄
¯̄√
̃1

X
∈G̃1

̄·

¯̄̄̄
¯̄ =

¯̄̄̄
¯
√


̃1

X
=1

̄·1 (̄· ≤ 0)
¯̄̄̄
¯ = 

̃1

¯̄̄̄
¯ 1

X
=1

1 ( ≤ 0)
¯̄̄̄
¯ → 2 | [1 ( ≤ 0)]| 

where  v  (0 1) and we use the fact that ̃1 = 1


P
=1 1 (̄· ≤ 0) →  ( ≤ 0) = 1

2  Similarly,¯̄̄̄
¯̄√̃2

X
∈G̃2

̄·

¯̄̄̄
¯̄ =

¯̄̄̄
¯
√


̃2

X
=1

̄·1 (̄·  0)

¯̄̄̄
¯ = 

̃2

¯̄̄̄
¯ 1

X
=1

1 (  0)

¯̄̄̄
¯ → 2 | [1 (  0)]| 

This calculation indicates that the negative value 
£
̂2(2)− ̄2

¤
has the probability order 

¡
−1

¢
that

cannot be 
¡
−1

¢
 In other words, the order (

−1) is a tight probability order for ̂2(2)− ̄2 

Proof of Proposition D.1. Following similar arguments as used in the proofs of Lemmas A.1-A.3, we can

show that individuals from the true group G0
 would stay in the same estimated group w.p.a.1, i.e.,

Pr

∙
sup

1≤≤
1(̂ = ̂  

0
 6= 0 ) = 1

¸
→ 0 as ( )→∞

We only consider the case where some true groups are further divided into several groups. For notational

simplicity, we only consider the case 0 = 1 where our true parameters can be rewritten as (00 0)0 =
(00 00 0)0 without the group-specific subscript. Since we still estimate a PSTR model with  ≥ 1 groups,
the estimators, e.g., (̂

()

  ̂() ) still have the group-specific subscript. But for notational brevity, we will

denote (̂
()

  ̂() ) as (̂ ̂) Then we can write Q(Θ̂() D̂() Ĝ()) =
P

=1 Q̄(̂ ̂) where Q̄(· ·) is
defined in Section 4.1. Following the analysis for (C.2) in the proof of Lemma C.2, we have

̂ − 0 = Φ̄1(̂)
−1 1

̂

X
∈Ĝ

(̂)
0M0 − Φ̄1(̂)−1Φ̄2(̂)0 (D.1)

where Φ̄1() ≡ 1
̂

P
∈Ĝ

()
0M0() = Φ1(Ĝ ) and Φ̄2() ≡ 1

̂

P
∈Ĝ

()
0M0( 

0) =
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Φ2(Ĝ  
0). Following the similar analysis for (C.3) of Lemma C.2, we have

1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i

= 00Φ̄3(̂)
0 + (̂ − 0)0Φ̄1(̂)(̂ − 0) + 2(̂ − 0)0Φ̄2(̂)

0

−(̂ − 0)0
2



X
∈Ĝ

(̌)
0M0 − ̂

0


2



X
∈Ĝ

(̂ 
0)0M0

where Φ̄3() ≡ 1
̂

P
∈Ĝ

( 
0)0M0( 

0) = Φ3(Ĝ  
0). Plugging (D.1) into the above equation,

we have

1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i
= 00

£
Φ̄3(̂)− Φ̄2(̂)0Φ̄1(̂)−1Φ̄2(̂)

¤
0

−(Ĝ ̂)
0Φ̄1(̂)

−1(Ĝ ̂) + 2
00Φ̄2(̂)

0Φ̄1(̂)
−1(Ĝ ̂)

−2
³
̂ − 0

´0
∆(Ĝ ̂ 

0)− 200∆(Ĝ ̂ 
0)

≡ ∆Q̄1 + +∆Q̄5

We discuss two cases: (1) ( )− 12 = (1) and (2) ( )− 12 →∞ as ( )→∞

In Case (1), we have 0 = (−12) By Assumption D.1(iii) and equation (D.1), we can readily show
that ̂ − 0 = (

−12). With this result, then we can show that ∆Q̄ = (
−1) for  = 1  5 by

using Assumption D.1.

In Case (2), we have ̂ − 0 = (
−12 + ( )−

¯̄
̂ − 0

¯̄
) by (D.1) and Assumption D.1(iii). Then

we can apply Assumption D.1 to show that

∆Q̄1 = (( )−2
¯̄
̂ − 0

¯̄
) ∆Q̄2 = (

−1)

∆Q̄3 = (
−12( )−

¯̄
̂ − 0

¯̄
)

∆Q̄4 = (
−12( )−

¯̄
̂ − 0

¯̄2
+ −1

¯̄
̂ − 0

¯̄
) and

∆Q̄5 = (
−12( )−

¯̄
̂ − 0

¯̄


Because ∆Q̄1  0 by Assumption D.1(ii) and 1
̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i
 0 by the definition of

least squares estimation, we can conclude ∆Q̄1 should have at most the same order as
P5

=2∆Q̄. By

comparison between these orders, we can show that
¯̄
̂ − 0

¯̄
= (

−1( )2) and
P5

=1∆Q̄ = (
−1)

follows. Consequently,

0 ≥ ̂2()− ̄2 =
1



X
=1

h
Q̄(̂ ̂)− Q̄(

0 0)
i

=
X
=1

̂



1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i

≥
X
=1

1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i
= (

−1)

This implies that ̂2()− ̄2 = (
−1) for any 0 ≤  ≤ max ¥

22



E Consistency of groupmembership estimators in the fixed-threshold-
effect framework

In this section, we discuss the asymptotic property of our least squares estimator under the constant threshold

effect framework (i.e.,  = 0). Suppose Assumptions A.1-A.5 hold except that we now let  = 0. Then one

can follow the arguments as used in the proofs of Lemmas C.2-C.10 to show that
¯̄
̌ − 0

¯̄
= (( )−1)

and ̌ = ̌(0) + (( )−12), where (̌ ̌) is infeasible estimator for  ∈ G.
In the PSTR model, the major difficulty is to show the consistency of the estimator of the latent group

structure as in Theorem 3.1. Once we establish a similar result as that of Lemma A.3, we can prove

Theorem 3.1. In addition, we can prove Lemmas A.4-A.6 which confirms
¯̄
̂ − 0

¯̄
= (( )−1) and

̂ = ̌ + (( )−12). In the following analysis, we give a sketch of the proof of Theorem 3.1 in the

fixed-threshold-effect framework.

To proceed, we add some notations. Define

̃ ( ̃G) ≡ 1



X
=1

X
=1

1(0 = )1( = ̃)
£
(0

0
)
2|0

¤


where (·|) ≡ (·| = ). We impose an additional identification condition:

Assumption E.1. As ( )→∞, the following statements hold: (i) For some constants   0 and ̄  0

we have

sup
1≤≤

sup
(0∗‘)‘∈B2

sup
|−∗|̄

(
Pr

"
X
=1

[̃()
0 − ̃(

∗)0∗]2 ≤



X
=1

[( − ∗)0̃(∗)]
2
+ | − ∗| £(0)2|¤

#)
= (−4);

(ii) There exists a constant   0 such that for all  ∈ G,

Pr

µ
inf

(GD)∈G×Γ
max
̃∈G

{min[ ( ̃DG)] ∧ ̃ ( ̃G)}  

¶
→ 1;

(iii) For all  ̃ ∈ G, where  6= ̃, we have
°°(00  0)0 − (00̃  0̃)0°°   for some constant   0;

(iv) For any  6= ̃ and 1 ≤  ≤  , we have

max
¡
[̃(

0
)
0(0̃ − 0)]

2
¯̄
0̃ − 0

¯̄

£
(0

0
̃)
2|0̃

¤¢ ≡ ̃̃ ≥ ̃̃

for some constant ̃̃  0

Assumption E.1 (i) is a non-colinearity condition similar to Assumption A.4(ii) in the main text. How-

ever, it requires that the non-colinearity property should hold for each individual. Assumption E.1(ii) is

modified from Assumption A.2. Assumption E.1(iii)-(iv) is modified from Assumption A.3(i)-(ii). As re-

marked in Section 3.1, E.1(iv) is redundant if we assume that min([̃(
0
)̃(

0
)
0]) and 00 (0|0)0

are bounded below from zero by a constant  say.

Below we prove Theorem 3.1 under Assumptions A.1, A.3(iii)-(iv) and E.1.

Proof of Theorem 3.1. Lemma A.1 still holds under the stated conditions. Lemmas A.2-A.3 are replaced

by Lemmas E.1 and E.2 below. Combining Lemmas E.1-E.2 we have the desired claim. ¥
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Lemma E.1. Suppose that Assumptions A.1, A.3(iii)-(iv) and E.1 hold. Then we have ((Θ̂ D̂) (Θ
0D0))

→
0, where

((Θ̂ D̂) (Θ
0D0)) = max

½
max
∈G

µ
min
̃∈G

°°°̂ − 0̃

°°°2 + ¯̄̂ − 0̃
¯̄¶

 max
̃∈G

µ
min
∈G

°°°̂ − 0̃

°°°2 + ¯̄̂ − 0̃
¯̄¶¾



Proof of Lemma E.1. It suffices to show (i) max∈G
³
miñ∈G

°°°̂ − 0̃

°°°+ ¯̄̂ − 0̃
¯̄´
= (1) and (ii)

max̃∈G
³
min∈G

°°°̂ − 0̃

°°°+ ¯̄̂ − 0̃
¯̄´
= (1)

We first show (i). By Lemma A.1, we have

1


Q̃(Θ̂ D̂ Ĝ) =

1


Q(Θ̂ D̂ Ĝ) + (1) ≤ 1


Q(Θ0D0G0) + (1)

=
1


Q̃(Θ0D0G0) + (1)

where the inequality holds by the definition of least squares estimator. On the other hand, noting that

Q̃(ΘDG) is minimized at (Θ0D0G0), we have 1

[Q̃(Θ̂ D̂ Ĝ) − Q̃(Θ0D0G0)] ≥ 0 It follows that

1

[Q̃(Θ̂ D̂ Ĝ)− Q̃(Θ0D0G0)] = (1) By direct calculation, we have uniformly in (ΘDG)

1



h
Q̃(ΘDG)− Q̃(Θ0D0G0

)
i

=
1



X
=1

X
=1

n
000 ̃(

0
0
)− 0 ̃()

o2
≥ 



X
=1

X
=1

h
( − 00

)0̃()
i2
+





X
=1

X
=1

¯̄̄
 − 00

¯̄̄

h
(0

0
0
)2|00

i
+ (1)

=
X
=1

X
̃=1





X
=1

X
=1

1(0 = )1( = ̃)
n£
(0 − ̃)

0̃(̃)
¤2
+
¯̄
̃ − 0

¯̄

£
(0

0
)
2|0

¤o
+ (1)

= 

X
=1

X
̃=1

h
(0 − ̃)

0 ( ̃DG)(0 − ̃) +
¯̄
̃ − 0

¯̄
̃ ( ̃G)

i
+ (1)

where the inequality holds by Assumption E.1(i) and the last equation is by the definitions of ( ̃DG)

and ̃ ( ̃G). It follows that

(1) = 

X
=1

X
̃=1

h
(0 − ̃)

0 ( ̃DG)(0 − ̃) +
¯̄
̃ − 0

¯̄
̃ ( ̃G)

i
+ (1)

≥ 

X
=1

X
̃=1

n
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o³°°0 − ̃
°°2 + ¯̄̃ − 0

¯̄´
+ (1)

≥ max
∈G

X
̃=1

n
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o³°°0 − ̃
°°2 + ¯̄̃ − 0

¯̄´
+ (1)

≥ max
∈G

µ
min
̃∈G

°°°0 − ̂̃

°°°2 + ¯̄̃ − 0
¯̄¶ X

̃=1

n
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o
+ (1)

≥ max
∈G

µ
min
̃∈G

°°°0 − ̂̃

°°°2 + ¯̄̃ − 0
¯̄¶
+ (1)
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where the last inequality is by Assumption E.1(ii) which says that there exists a group ̃∗ ∈ G such thatn
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o
   0 w.p.a.1. Consequently, we have

max
∈G

µ
min
̃∈G

°°°0 − ̂̃

°°°2 + ¯̄̃ − 0
¯̄¶
=  (1) 

To show (ii), we can follow a similar analysis given in the proof of Lemma A.2. The details are omitted here.

¥

Remark. The proof of Lemma E.1 shows that there exists a permutation Θ̂ such that
°°°̂ − 0Θ̂()

°°°2 +¯̄̄
̂ − 0Θ̂()

¯̄̄
= (1) We can take Θ̂() =  by relabeling. In the following analysis, we shall write°°°̂ − 0Θ̂()

°°°2 + ¯̄̄̂ − 0
Θ̂()

¯̄̄
= (1) without referring to the relabeling any more.

Lemma E.2. Let ̂(ΘD) = argmin∈G
P

=1

£
̃ − ̃()

0
¤2
 Suppose that Assumptions A.1, A.3(iii)-

(iv) and E.1 hold. Then we have that for some   0,

Pr

Ã
sup

(ΘD)∈Ñ

"
1



X
=1

1(̂(ΘD) 6= 0 )

#!
= (−4)

where Ñ =
n
(ΘD) ∈ B × Γ : °° − 0

°°2 + ¯̄ − 0
¯̄
   ∈ G

o
Proof of Lemma E.2. The proof is similar to that of Lemma A.3 except the details of bounding Z(ΘD)
where

Z(ΘD) ≡ 1(0 6= )1

Ã
X
=1

[̃ − ̃()
0)]2 ≤

X
=1

[̃ − ̃(0 )
00 ]

2

!


For Z(ΘD), we have
Z(ΘD) ≤ max

̃∈G\{}
1 (( ̃) ≤ 0) 

where

( ̃) =
X
=1

[̃(̃)
0̃ − ̃()

0]
½
1

2
[̃(̃)

0̃ − ̃()
0] + ̃ + ̃(

0
̃)
00̃ − ̃(̃)

0̃

¾


Then we can follow the analysis of Lemma A.3 to show that

Z(ΘD) ≤ max
̃∈\{}

1

(
X
=1

[̃(
0
̃)
00̃ − ̃0(

0
)
00]

½
1

2
[̃(

0
̃)
00̃ − ̃0(

0
)
00] + ̃

¾
≤ 

)
≡ Z̃

where  = 
√

P

=1(kk2 + 2) for some constant   0. Next, we can use the Assumption E.1(i) to

show that

Pr(Z̃ = 1) ≤
X

̃∈G\{}
Pr

(


2

X
=1

£
(0̃ − 0)

0̃(0)
¤2
+
¯̄
0̃ − 0

¯̄

£
(0

0
̃)
2|0̃

¤
+

X
=1

[̃(
0
̃)
00̃ − ̃0(

0
)
00]̃ ≤ 

)
+ (−4)

Then one can use Assumption E.1(iv) and similar arguments as used in the proof of Lemma A.3 to show

that the leading term on the right hand side of the last inequality is (−4) The result then follows from
the Markov inequality as used in the proof of Lemma A.3. ¥
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