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Abstract: This paper offers a new approach to address the model uncertainty in (poten-

tially) divergent-dimensional single-index models (SIMs). We propose a model-averaging

estimator based on cross-validation, which allows the dimension of covariates and the

number of candidate models to increase with the sample size. We show that when all

candidate models are misspecified, our model-averaging estimator is asymptotically opti-

mal with its squared loss asymptotically identical to that of the infeasible best possible

averaging estimator. In a different situation where correct models are available in the

model set, the proposed method assigns all weights to the correct models asymptotically.

We also propose averaging regularized estimators and prescreening methods to deal with

high-dimensional covariates. We illustrate the method via simulations and two empirical

applications.
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1. Introduction

A linear regression model is a common tool to analyze the relationship between

a response variable of interest y and a vector of covariates x in diversified fields.

However, in many applications, such a relationship is nonlinear (see, e.g., Naik

and Tsai, 2001; Liang et al., 2007). A natural extension to relax linearity is to

consider a single-index model (SIM) that enables y to depend on x via an unknown

and possibly nonlinear link function g, i.e., y = g(xTβ) + ε, where β is a vector

of unknown parameters, and ε is the disturbance term. With an unknown link

function, this model is more flexible than linear regression models, while main-

taining relative ease of interpretation (Horowitz, 1998). It also avoids the curse

of dimensionality in many nonparametric models. Various approaches have been

proposed to estimate the SIM, e.g., average derivative estimation (Powell et al.,

1989), nonlinear least squares (Ichimura, 1993), and profile least squares (Liang

et al., 2010). All of these methods require correct specification of the covariates.

However, this knowledge is often unavailable in practice, especially when there are

many covariates, so researchers are exposed to a potentially large degree of model

uncertainty with respect to which covariates should be included in the model.

A popular method to address model uncertainty is model selection, which picks

the “best” model based on certain data-driven criteria, e.g., information criteria.

Traditional model selection methods have been extended to SIMs, such as AIC



(Naik and Tsai, 2001) and cross-validation (Kong and Xia, 2007). More recently,

Cheng et al. (2017) studied a shrinkage-type estimator to select and estimate

covariates in SIMs. As an alternative to model selection, model averaging (MA)

addresses model uncertainty by combining estimators from all candidate models

with certain weights based on the model performance, and it often leads to a

lower risk than model selection (Hansen, 2014a). The past decade has witnessed a

burgeoning literature pertaining to model averaging. There are two main streams

of averaging techniques: Bayesian model averaging (BMA) and frequentist model

averaging (FMA). Although BMA is flexible and can be applied in many models,

the choice of prior probabilities is often challenging and experiential (see Hoeting

et al., 1999, for an excellent overview). There are various FMA methods, and a

partial list includes smoothed information criteria (e.g., Buckland et al., 1997),

optimal averaging (e.g., Hansen, 2007), and plug-in methods (e.g., Liu, 2015),

among many others. Despite the increasing popularity of the averaging techniques,

MA estimators for SIMs are hardly studied.

This paper proposes a new model-averaging estimator to address model un-

certainty in SIMs. We focus on the optimal averaging method, which aims to

achieve an averaged prediction that outperforms any single model. The proposed

SIM averaging offers a flexible method to predict the response variable, explicitly

considering the model uncertainty. To appropriately choose the averaging weights,



we adopt a cross-validation criterion. It is easy to implement and does not require

an unbiased estimator of risk, which is difficult to obtain for SIMs. An impor-

tant merit of our approach is that it allows the dimension of covariates and the

number of candidate models to diverge as the sample size increases. Moreover,

we study model averaging of regularized estimators with an L1 penalty as well as

model screening to deal with the high-dimensional situations, where the number

of covariates is overly large and may even exceed the number of observations. We

establish the asymptotic theory of the regularization-based averaging estimator.

We contribute to the model averaging literature in three main respects. First,

we propose a new model-averaging estimator for SIMs and establish its asymptotic

optimality in terms of minimum squared loss. Since we consider the case of an

unknown link function, we rely on a semiparametric approach to estimate each

candidate model. Despite a wide range of FMA applications in various models,

relatively fewer studies have considered nonlinear or semi-/non-parametric optimal

model averaging. Zhang et al. (2016) studied averaging generalized linear (mixed-

effects) models. Feng et al. (2022) proposed an optimal averaging estimator for gen-

eral nonlinear models. While allowing for a nonlinear relation between covariates

and the response variable, these two studies considered parametric models with

a given link function. We differ from them by studying a semiparametric model

with an unknown link function. The unknown link function requires semiparamet-



ric estimation for candidate models, and further motivates a distinct criterion to

determine the weights. Semi-/non-parametric averaging was first proposed by Liu

(2018) in a non-optimal framework. Li et al. (2018) and Zhang and Wang (2019)

then studied optimal model averaging in varying-coefficient and partially linear

models, respectively. Recently developments on optimal semi-/non-parametric

model averaging include Zhu et al. (2019), Racine et al. (2022) and Zhu et al.

(2023) in different contexts. The current paper provides a comprehensive study on

the properties of optimal model averaging for SIMs. To the best of our knowledge,

this is the first study on semi-/non-parametric model averaging that allows the

number of candidate models and the dimension of candidate models to diverge

when the sample size increases, which is particularly useful in a high-dimensional

setting. Our study also complements Hansen (2014b) by providing theory of the

cross-validation-based averaging estimator for nonparametric models.

Second, we study the asymptotic properties of the SIM averaging estimator

when the candidate models include correct models. In the framework of linear

models, Zhang et al. (2020) showed the consistency of averaging coefficient es-

timators when there is at least one correct model in the candidate model set.

However, no asymptotic results have been established for semi-/non-parametric

model averaging when correct models are available. We fill in this gap by pro-

viding the asymptotic behavior of our weight estimators for SIMs. We show that



our averaging method can consistently choose the correct models by asymptoti-

cally assigning all weights to the correct models, no matter whether the candidate

models are of finite or diverging dimension. This result complements the asymp-

totic optimality when all candidate models are misspecified and demonstrates the

validity of our method when there are correct models in the model space. Gener-

alizing the weight convergence of parametric model averaging to SIM averaging is

by no means trivial, because the estimators to be averaged in parametric models

typically have a simple (linear) analytical form (Zhang et al., 2020). Moreover,

compared with Zhang et al. (2020), our theoretical analysis is further complicated

by allowing a nonlinear relationship between the response variable and covariates.

Last but not least, this paper deals with high-dimensional model averaging,

and offers the first study on the properties of averaging regularized estimators.

Zhang et al. (2020) advocated the use of regularized estimators in a preliminary

model screening procedure to deal with high-dimensional covariates, but did not

consider combining regularized estimators. In contrast, we propose an innovative

regularization-based averaging approach and provide its theoretical justifications.

This approach allows us to deal with the cases in which there are more parameters

to estimate than the available observations. Based on the regularized estimation,

we also propose a preliminary model screening procedure to shrink the candidate

model space. Our methods to deal with high-dimensionality differ from that of



Ando and Li (2014), which reduced the dimension by grouping the covariates

and only averaging estimators associated with preselected groups. The theoretical

analysis on regularization-based averaging and screening can also be applied or

extended to parametric and other semi-/non-parametric models.

We verify the theories via an extensive set of simulation experiments. We also

apply the proposed method to two real datasets. The first revisits the relationship

between financial development and income distribution using country level data,

and the second predicts US firm sales growth.

The remainder of this paper is organized as follows. Section 2 introduces the

averaging method for SIMs. Section 3 studies its theoretical properties. Section 4

considers regularization-based averaging and model screening. Section 5 presents

the simulation study. Section 6 provides the empirical applications. Section 7

concludes. Appendix provides additional auxiliary conditions needed for the the-

ory. The Online Supplement contains more detailed theoretical discussions and

simulation studies.



2. Model setup and estimation

2.1 Single-index model averaging

Assume the following data generating process (DGP), which is also referred to as

the true model:

yi = µi + εi (i = 1, . . . , n),

where yi is the response variable of interest with mean µi, and the random dis-

turbances ε1, . . . , εn are independent and (possibly) heteroscedastic with E(εi) = 0

and E(ε2i ) = σ2
i . Our purpose is to estimate µi and thus predict the response vari-

able with p-dimensional covariates xi = (x1,i, . . . , xp,i)
T independent with εj for any

i, j = 1, . . . , n, where p is allowed to be finite or divergent when the sample size n

increases. To this end, one may employ an SIM that enables us to flexibly model

the dependence of µi on xi. However, it is unclear in practice which covariates

in xi should be used for the prediction. Let x(s),i be the ps-dimensional covariate

vector whose elements are a subset of xi. Then the sth candidate SIM model using

covariates x(s),i can be written as

yi = g(s)(x
T

(s),iβ(s)) + ε(s),i, i = 1, . . . , n; s = 1, 2, . . . , Sn,

where β(s) is the associated parameter vector, g(s)(·) is an unknown link function

allowed to vary across candidate models, ε(s),i = yi − g(s)(x
T

(s),iβ(s)), and Sn is

the number of candidate models. As we allow p to be potentially divergent, ps



2.1 Single-index model averaging

may also diverge as n → ∞ for some s ∈ {1, . . . , Sn}, leading to an increasing

dimension of the parameter vector β(s) in some models. Clearly, if a candidate

model omits useful covariates, the resulting estimator could be biased, while an

overly large model containing many unnecessary covariates leads to an efficiency

loss and imposes heavier computational burden, especially in the nonparametric

context. We call a specification a misspecified model if it omits certain covariates

in the DGP. In contrast, the sth candidate specification is defined as a correct

model if there exists a vector β(s) such that µi = g(s)(x
T

(s),iβ(s)). Note that a

correct model does not necessarily coincide with the DGP, because it may include

redundant covariates. Thus, the correct model is not unique.

We propose to tackle such model uncertainty by averaging the estimators ob-

tained from various candidate models, each of which includes a distinct subset of

covariates and (likely) a different link function. To estimate each candidate SIM,

we follow Ichimura (1993) to achieve the identification of β(s) by normalizing its

first element to 1 and employ the nonlinear least squares (NLS). One of the ad-

vantages of NLS is its light computation burden, which is crucial in our case since

our averaging technique is based on a cross-validation criterion and the number

of candidate models is typically substantial. To define the NLS estimator, let k(·)

be a kernel function. For the sth candidate model, denote hs as the bandwidth,

khs(·) = k(·/hs)/hs, and K(s)(β(s)) = {K(s),ij(β(s))}n×n as an n × n smoothing



2.2 Choosing the averaging weights

matrix with (i, j)-element

K(s),ij(β(s)) = khs(x
T

(s),iβ(s) − xT

(s),jβ(s))/
∑n

j∗=1
khs(x

T

(s),iβ(s) − xT

(s),j∗β(s)).

Further define y = (y1, . . . , yn)T, µ = (µ1, . . . , µn)T and X(s) = (x(s),1, . . . ,x(s),n)T.

The NLS estimator β̂(s) for the sth candidate model can then be obtained by

minimizing the following objective function:

H(s),n(β(s)) = n−1
∥∥y −K(s)(β(s))y

∥∥2
. (2.1)

The resulting estimator of µ from the sth candidate model is µ̂(s) = K(s)(β̂(s))y.

With the estimator of each candidate model, we can obtain the model averaging

estimator of µ as

µ̂(w) =
Sn∑
s=1

wsµ̂(s) = K(w, β̂)y, (2.2)

where β̂ = (β̂
T

(1), . . . , β̂
T

(Sn))
T, K(w, β̂) =

∑Sn
s=1 wsK(s)(β̂(s)), and the weight vec-

tor w = (w1, . . . , wSn)T belongs to the set W = {w ∈ [0, 1]Sn :
∑Sn

s=1 ws = 1}.

The averaging estimator µ̂(w) offers an appealing method to predict the response

variable.

2.2 Choosing the averaging weights

Given our main goal of prediction, our weight choice aims at minimizing the

squared loss Ln(w) = ‖µ̂(w)− µ‖2. We propose to choose the averaging weights



2.2 Choosing the averaging weights

by minimizing a J-fold cross-validation (CV) criterion in a similar manner to jack-

knife model averaging (Hansen and Racine, 2012). Our approach is a numerical

model-averaging method that is easy to implement and hardly relies on the struc-

ture of the model, except the dependence features of data. Unlike the Mallows

criterion, this method is more flexible, since it does not require an unbiased es-

timator of risk, which is often difficult to obtain for complex models such as the

single-index model considered here.

To implement the J-fold CV, we divide the dataset into Jn blocks so that there

are Mn = bn/Jnc observations in each block, where b·c denotes the integer part

of a number. For the sth candidate model, let β̂
[−j]
(s) be the NLS estimator of β(s)

without using the observations from the jth block for j = 1, . . . , Jn. Then, the

corresponding leave-block-out kernel estimator is µ̃(s) = (µ̃(s),1, . . . , µ̃(s),n)T with

µ̃(s),1 =

(
0T

Mn
,

khs

(
xT
(s),Mn+1β̂

[−1]

(s) −x
T
(s),1β̂

[−1]

(s)

)
∑

Mn<i≤n

khs

(
xT
(s),i

β̂
[−1]

(s) −xT
(s),1

β̂
[−1]

(s)

) , · · · , khs

(
xT
(s),nβ̂

[−1]

(s) −x
T
(s),1β̂

[−1]

(s)

)
∑

Mn<i≤n

khs

(
xT
(s),i

β̂
[−1]

(s) −xT
(s),1

β̂
[−1]

(s)

)
)T

y,

...

µ̃(s),n =

(
khs

(
xT
(s),1β̂

[−Jn]

(s) −xT
(s),nβ̂

[−Jn]

(s)

)
∑

1≤i≤n−Mn

khs

(
xT
(s),i

β̂
[−Jn]

(s) −xT
(s),n

β̂
[−Jn]

(s)

) , · · · , khs

(
xT
(s),n−Mn

β̂
[−Jn]

(s) −xT
(s),nβ̂

[−Jn]

(s)

)
∑

1≤i≤n−Mn

khs

(
xT
(s),i

β̂
[−Jn]

(s) −xT
(s),n

β̂
[−Jn]

(s)

) ,0T

Mn

)T

y,

where 0Mn is an Mn-dimensional vector of zeros. The above equations suggest

that there is a matrix K̃(s)(β̃(s)) with β̃(s) = (β̂
[−1]

(s)
T, . . . , β̂

[−Jn]

(s)
T)T, such that the

leave-block-out estimator of µ under the sth candidate model can be written as

µ̃(s) = K̃(s)(β̃(s))y. Let β̃ = (β̃
T

(1), . . . , β̃
T

(Sn))
T and K̃(w, β̃) =

∑Sn
s=1wsK̃(s)(β̃(s)).



The averaging leave-block-out estimator of µ is then given by

µ̃(w) =
Sn∑
s=1

wsµ̃(s) = K̃
(
w, β̃

)
y.

The J-fold CV criterion can be obtained by CVJn(w) = ‖µ̃(w)− y‖2, and the

weight vector is chosen by minimizing CVJn(w) over w ∈ W , i.e.,

ŵ = argminw∈W CVJn(w). (2.3)

The resulting averaging estimator of µ is

µ̂(ŵ) =
Sn∑
s=1

ŵsµ̂(s) = K(ŵ, β̂)y,

which we refer to as the J-fold CV model-averaging (JCVMA) estimator.

Since the CV objective function can be rewritten as CVJn(w) = wTAw, where

the element of A is As,m = {K(s)(β̃(s))y − y}T{K(m)(β̃(m))y − y} for s,m =

1, . . . , Sn, the weight calculation in (2.3) is a quadratic programming problem

which is easy to solve. The computational cost of this optimization mainly lies in

the CV estimator of {µ̃(s)}Sns=1, and will be substantial if Sn and Jn are large. We

shall discuss how to determine Sn and which models to combine when the entire

model space is huge in Section 4.

3. Asymptotic properties

This section studies the asymptotic properties of the proposed averaging estimator.

We first examine the squared loss of our averaging estimator when all candidate



3.1 Asymptotic optimality

models are misspecified. Then we consider the case where the set of candidate

models includes the correct (but not necessarily true) models.

3.1 Asymptotic optimality

This section studies the property of JCVMA when none of the candidate models

is correct. The following regularity conditions are required for the asymptotic

optimality of the JCVMA estimator, most of which are standard in the literature.

All limiting processes below correspond to n→∞ unless stated otherwise.

Condition 1. For s = 1, . . . , Sn and r = 1, . . . , ps, the rth element of β̂(s) obtained

from (2.1), β̂(s),r, has a limiting value β∗(s),r.

This condition ensures the existence of the limit of β̂(s), which is often referred

to as the “quasi-true” parameter. Similar conditions are imposed in many model

averaging studies, such as Zhang et al. (2016), Ando and Li (2017). We further

denote β∗(s) = (β∗(s),1, ..., β
∗
(s),ps

), µ∗(s) = K(s)(β
∗
(s))y and µ̃∗(s) = K̃(s)(1Jn ⊗ β∗(s))y,

where ⊗ represents the Kronecker product and 1Jn is a Jn × 1 vector of 1.

Condition 2. (i) σmax = O(1), where σmax = max1≤i≤n σi. (ii) max1≤i≤n |µi| =

O(1).

Condition 2 restricts the magnitude of the variance and the mean of yi. It

is satisfied if the response variable has a finite support. Similar conditions are



3.1 Asymptotic optimality

imposed by Ando and Li (2017) (Assumptions (A1) and (A4)) and Zhu et al.

(2019) (Conditions (C.1) and (C.7)).

Condition 3. There exists a positive sequence {dn} such that

max
1≤s≤Sn

max
1≤i≤n

max
1≤j≤n

K(s),ij(β
∗
(s)) = OP (dn), (3.4)

n max
1≤s≤Sn

max
1≤j≤n

n∑
i 6=j

K2
(s),ij(β

∗
(s)) = OP (1), (3.5)

where K(s),ij(β
∗
(s)) = khs(x

T

(s),iβ
∗
(s) − xT

(s),jβ
∗
(s))/

∑n
j∗=1 khs(x

T

(s),iβ
∗
(s) − xT

(s),j∗β
∗
(s)).

This condition controls the magnitude of the kernel weight K(s),ij(β
∗
(s)) as-

signed to observation i’s neighbors j for each set of covariates x(s). Such weights

measure how much an observation contributes to the estimator µ̂(s) for the sth

candidate model. Combining with the fact that the row sum of the smoothing

matrix K(s)(β(s)) is 1, this condition implies that all observations receive nonzero

kernel weights, such that they all contribute to estimating µ(s) to different ex-

tents. If {xi} is independent and identically distributed, (3.4) and (3.5) hold with

probability one.

Condition 4. The smoothing matrix satisfies

max
1≤s≤Sn

max
1≤j≤n

n∑
i=1

K(s),ij(β
∗
(s)) = OP (1). (3.6)

Condition 4 concerns the L∞ norms of K(s) and is widely used in nonparametric

models, such as Assumption 1.3.3(i) of Härdle et al. (2007).



3.1 Asymptotic optimality

In addition, we also need to guarantee that the NLS estimator of β-parameters

and its cross-validation version for each candidate model are consistent in the

sense that they converge to their corresponding quasi-true values. The conditions

involved are standard in the literature (see, e.g., Ichimura, 1993), which are pro-

vided in the Appendix A.1.

Lemma 1. Under Conditions1–4 and A1.1–A1.5 in the Appendix, we have that

max
1≤s≤Sn

√
n

Snps

∥∥∥β̂(s) − β∗(s)

∥∥∥ = OP (1), (3.7)

and

max
1≤j≤Jn

max
1≤s≤Sn

√
n−Mn

Snps

∥∥∥β̂[−j]
(s) − β∗(s)

∥∥∥ = OP (1). (3.8)

This lemma states that the NLS estimator β̂(s) obtained from minimizing (2.1)

and its CV version β̂
[−j]
(s) (leaving observations of the jth block out) both converge

to the quasi-true value β∗(s) of the sth model at the uniform speed of
√
n/Snps

and
√

(n−Mn)/Snps, respectively. Importantly, these convergence results hold

in both finite- and divergent-dimensional cases, which is vital for establishing the

asymptotic optimality.

To state the next condition regarding the second-order derivatives of the link

function, let d·e be the ceiling of a number and we denote

ĝ(s)(x
T

(s),iβ(s)) =
∑n

j=1
yjkhs

(xT

(s),iβ(s) − xT

(s),jβ(s))/
∑n

j∗=1
khs

(xT

(s),iβ(s) − xT

(s),j∗β(s)),



3.1 Asymptotic optimality

ĝ
[−B(i)]
(s) (xT

(s),iβ(s)) =
∑n

j=1
yjkhs

(xT

(s),iβ(s) − xT

(s),jβ(s))/
∑

j∗∈A(i)
khs

(xT

(s),iβ(s) − xT

(s),j∗β(s)),

where the superscript [−B(i)] denotes the estimator without using the entire block

that contains the ith observation, i.e., B(i) = {di/MneMn −Mn + 1, . . . , di/MneMn},

and A(i) = {1, . . . , n}\B(i). We further denote O(β∗(s), ρ) as a neighborhood of

β∗(s) for some positive constant ρ, i.e., {β(s) ∈ Rps : ‖β(s)−β∗(s)‖ ≤ ρ}, and λmax(·)

as the maximum eigenvalue.

Condition 5. There exists a ρ > 0 such that

max
1≤s≤Sn

sup
β
(1)
(s)

,..,β
(n)
(s)

∈O(β∗
(s)
,ρ)

λmax

 1

n

n∑
i=1

∂ĝ(s)(x
T

(s),iβ
(i)
(s))

∂β(s)

∂ĝ(s)(x
T

(s),iβ
(i)
(s))

∂βT

(s)

T
 = OP (pmax), (3.9)

and

max
1≤s≤Sn

sup
β
(1)
(s)

,..,β
(n)
(s)

∈O(β∗
(s)
,ρ)

λmax

 1

n

n∑
i=1

∂ĝ
[−B(i)]
(s) (xT

(s),iβ
(i)
(s))

∂β(s)

∂ĝ
[−B(i)]
(s) (xT

(s),iβ
(i)
(s))

∂βT

(s)

T
 = OP (pmax),

(3.10)

where pmax = max1≤s≤Sn ps denotes the maximum dimension of candidate models.

In this condition, (3.9) essentially controls the magnitude of ‖µ̂(s) − µ∗(s)‖2

through the differential mean value theorem, and (3.10) is a CV version of (3.9)

due to the J-fold CV estimator, which controls the magnitude of ‖µ̃(s) − µ̃∗(s)‖2.

This condition is satisfied if {g(s)(·)}Sns=1 is sufficiently smooth, such as max1≤s≤Sn

‖∂g(s)(x
T

(s)β
∗
(s))/∂β

∗
(s)‖2 = O(pmax) for each s = 1, . . . , Sn. Similar conditions are
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often used when studying model averaging for parametric models, e.g., Condition

(C.4) of Zhang et al. (2016) and Condition (C.2) of Zhang et al. (2020).

Denote µ∗(w) =
∑Sn

s=1wsK(s)(β
∗
(s))y as the averaging estimator based on the

quasi-true parameters β∗(s) for s = 1, . . . , Sn. Denote L∗n(w) = ‖µ∗(w)− µ‖2 as

the corresponding squared loss, and ξn = infw∈W L
∗
n(w) as the minimum squared

loss over all averaging estimators. We assume the following condition.

Condition 6. (i) ξ−1
n S

1/2
n npmax(n−Mn)−1/2 = oP (1). (ii) ξ−1

n dnMnn = oP (1).

This set of conditions resembles (8) in Theorem 1’ of Wan et al. (2010) and

Condition (C.2) of Zhu et al. (2019), which essentially requires that all candidate

models are misspecified to a non-trivial extent, such that their mean squared errors

are not too small. Thus, it precludes any scenario in which the correct models are

included in the set of candidate models. Note that this condition does not conflict

with Condition 5 because they concern different distance measures. In particular,

Condition 5 controls the distance between the estimators of µ(s) (i.e., µ̂(s) and µ̃(s))

and their corresponding quasi-true values (i.e., µ∗(s) and µ̃∗(s)), while Condition 6

concerns the degree of misspecification which is the distance between the quasi-true

value µ∗(s) and the true value µ.

Moreover, Condition 6 also provides restrictions on the relative divergent rates

of pmax, Sn,Mn and ξn, namely ξn is required to grow at a rate no slower than

S
1/2
n npmax(n−Mn)−1/2 and dnMnn. For example, if ξn explodes at a rate of n1−α
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for some α > 0, then S
1/2
n pmax(n −Mn)−1/2nα and dnMnn

α are both required to

converge to 0, which further implies that α needs to be small. If ξn explodes at a

rate of n, Sn = O(1) and Mn = O(1), then we can allow pmax to grow at a rate of

n1/2−c for some positive constant c < 1/2. Overall, Condition 6 is more likely to

be satisfied when ξn approaches infinity at a faster rate, or in other words, when

all candidate models are misspecified to a larger extent such that the squared loss

of the best possible averaging estimator is large.

Theorem 1. Under the conditions of Lemma 1 and Conditions 5–6, we have that

Ln(ŵ)

infw∈W Ln(w)
→ 1 in probability. (3.11)

Theorem 1 shows that the JCVMA estimator of µ is asymptotically optimal

in the sense that it leads to a squared loss that is asymptotically identical to that

of the infeasible best possible model-averaging estimator.

3.2 Weight convergence

This section studies the limiting behavior of averaging weights when the set of

candidate models includes at least one correct model. Without loss of generality,

we assume that the first S0 (≥ 1) models are correct. We denote ŵ∆ =
∑S0

s=1 ŵs as

the sum of weights given to the S0 correct models, where ŵs is the sth element of

the JCVMA weight vector ŵ. Denote WF = {w ∈ W : ws = 0 for s = 1, . . . , S0}

as the set of weight vectors that assign zero weights to the correct models. Let
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ξF = infw∈WF
L∗n(w) be the squared loss of only averaging misspecified models.

Condition 7. (i) ξ−1
F S

1/2
n npmax(n−Mn)−1/2 = oP (1). (ii) ξ−1

F dnMnn = oP (1).

Condition 7 replaces ξn in Condition 6 by ξF , and can be regarded as a counter-

part of Condition 6 for the cases in which correct models are present in the model

space. It requires that the squared loss of the best possible averaging of misspeci-

fied models has a sufficiently large divergent rate, in order to distinguish between

the misspecified and correct models. A similar set of conditions is discussed for

linear regressions in Zhang et al. (2020).

Theorem 2. If the conditions of Lemma 1 and Conditions 5 and 7 hold, then

ŵ∆ → 1 in probability.

Theorem 2 shows that JCVMA tends to assign all weights to the correct models

if they exist in the candidate model set. Consistent selection of the correct models

enables us to examine the (nonlinear) relation between covariates and the response

variable.

To conclude the prediction performance when candidate models include the

correct models, we need the following extra condition for ξF , Sn and pmax.

Condition 8. (i) ξ−1
F Snp

2
max = oP (1). (ii) ξ−3

F n3{S1/2
n pmax(n−Mn)−1/2+dnMn} =

oP (1).

Condition 8(i) imposes a stronger restriction on the speed that Sn and pmax

diverge. Condition 8(ii) adds the two equalities in Condition 7, and multiplies
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the left-hand side by ξ−2
F n2. Note that the limit of ξ−2

F n2 is usually not zero,

so ξ−1
F S

1/2
n npmax(n − Mn)−1/2 and ξ−1

F dnMnn must converge to zero faster than

those in Condition 7. More specifically, combining Condition 8(ii) with the fact

that ξF = OP (n), a result implied by the expression of L∗n(w), we have that

ξ−1
F {S

1/2
n npmax(n − Mn)−1/2 + dnMnn} = ξ2

Fn
−2ξ−3

F {S
1/2
n n3pmax(n − Mn)−1/2 +

dnMnn
3} = oP (1), which further implies Condition 7.

Corollary 1. If the conditions of Lemma 1 and Conditions 5 and 8 hold, then

Ln(ŵ)

infw∈WF
Ln(w)

→ 0 in probability. (3.12)

This corollary establishes the asymptotic optimality when correct models are

contained in the candidate model set, which complements the asymptotic opti-

mality in Theorem 1. It shows that when correct models are available in the

candidate set, the squared loss of the JCVMA estimator of µ, namely Ln(ŵ), is

asymptotically negligible compared to that of any averaging estimator that as-

signs zero weights to the correct models. In conjunction with Theorem 2, this

corollary suggests that JCVMA also provides good prediction when correct mod-

els are available, since it asymptotically assigns all weights to the correct models

and thus outperforms those averaging estimators that lack weight convergence and

assign zero weights to correct models.
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Thus far, we have studied SIM averaging when pmax < n and Sn is not too large,

even though both of them are allowed to diverge as n increases. In some appli-

cations, there may exist a huge number of potential covariates such that some

candidate models have more parameters to estimate than the sample size and the

number of all possible models is overly large. Hence, in this section, we study how

to perform JCVMA in such situations. We first consider averaging regularized es-

timators for candidate models in the presence of many covariates, and then study

how to choose Sn and the set of candidate models when the entire model space is

too large to be completely considered.

4.1 Averaging regularized estimators

When there exist a large number of covariates, NLS estimators obtained from solv-

ing (2.1) can be rather inefficient and sometimes even infeasible for some candidate

models due to (too) many parameters. Hence, we consider an alternative method

to estimate the sth candidate SIM using NLS with an L1 penalty. Particularly, the

estimator of β(s) for the sth candidate model can be obtained as

β̂
R

(s) = arg min
β(s)

{
H(s),n(β(s)) + λs‖β(s)‖1

}
, (4.13)

where H(s),n(β(s)) is the NLS objective function of the sth model defined in (2.1),

‖β(s)‖1 =
∑ps

i=1 |βi| is the penalty, and λs is the model-specific tuning parameter.
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The above optimization problem can be solved, e.g., by the coordinate descent algo-

rithm (Friedman et al., 2010). Furthermore, we denote µ̂R
(s) = K(s)(β̂

R

(s))y, µ̂
R(w) =∑Sn

s=1 wsµ̂
R
(s) and LRn (w) = ‖µ̂R(w)− µ‖2.

To study the property of the regularization-based JCVMA estimator, we need

conditions to ensure the consistency of regularized candidate estimators and to

control the speed of Sn and dn, parallel to Lemma 1 and Condition 6 for the

unregularized cases. To save space, we relegate the regularization version of similar

conditions to the Online Supplement.

Corollary 2. If Conditions 2–4 and S.6–S.8 in the Online Supplement hold, then

LRn (ŵ)

infw∈W LRn (w)
→ 1 in probability. (4.14)

Corollary 2 shows that the asymptotic optimality of JCVMA continues to hold

when the candidate SIMs are estimated by NLS with an L1 penalty. In conjunction

with model screening discussed in the following subsection, the regularization tech-

nique offers a way to implement model averaging when the number of covariates

exceeds the sample size.

4.2 Model averaging based on prescreening

When p is particularly large or even exceeds the sample size, not only some candi-

date models are difficult to estimate, but the model space is also huge, rendering

estimation and combination of all possible models infeasible. In this case, we can
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implement a model-screening step prior to averaging, which we refer to as pre-

screening. Pre-screening can be used when p < n but all possible combinations

of covariates still lead to excessively numerous candidate models, i.e., 2p is large,

and it is also useful in the high-dimensional cases in which p > n. We propose two

approaches to pre-screen the models and construct the set of candidate models for

averaging, depending on the relation between p and n.

First, when p < n and estimating the full model is feasible, we can order

the covariates based on their marginal correlations with the response variable, and

construct the set of candidate models by including one extra covariate at each time

based on the ordering. The idea of model screening based on bivariate correlation

is in a similar spirit as that of the “sure independence screening” proposed by

Fan and Lv (2008). Similar screening procedures have been used in other model-

averaging studies, such as Claeskens et al. (2006) and Ando and Li (2014).

Second, when p > n, it is impossible to estimate the full model using the

standard NLS as in (2.1), and we propose to pre-screen the models based on

regularized estimation of the full model as in (4.13). Particularly, we can solve

the following optimization problem: minβ {Hn(β) + λ‖β‖1}, where Hn(β) is the

same objective function as (2.1) but using all the covariates, and λ is the tuning

parameter. With a feasible amount of different values of λ, we can obtain a set

of corresponding candidate estimators, which can then be conveniently averaged.
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The idea of using regularized estimation for screening is advocated by Zhang et al.

(2016), but they only consider parametric models and provide no theory.

To justify the SIM averaging estimator obtained after a preliminary model

screening step, we can show that it remains asymptotically optimal, i.e., the

squared loss of the postscreening JCVMA is asymptotically identical to that of

the infeasible best possible model-averaging estimator obtained from the original

model set W (without prescreening). We provide a summary of assumptions and

a rough illustration of the idea to prove this result as follows. Let D be a (random)

subset of {1, . . . , Sn} and WD = {w ∈ [0, 1]Sn :
∑

s∈D ws = 1 and
∑

s/∈D ws = 0}

be a subset of W . Note that WD is also random due to the randomness of D.

The postscreening model-averaging estimator based on the subset D is obtained

by using the weight vector ŵs = arg minw∈WD CVJn(w). We make an additional

assumption that there exists a non-negative series of {νn} and a weight series of

{wn} ∈ W , such that ξ−1
n νn = oP (1), infw∈W CVJn(w) = CVJn(wn) − νn, and

Pr(wn ∈ WD) → 1. This assumption enures that there exists a weight in WD to

achieve the minimal CV loss asymptotically. This is the same as Assumption 1 in

Zhang et al. (2016), in which more explanations are provided. Under this addi-

tional condition as well as the conditions of Theorem 1, we can then use the same

arguments as Theorem 3 of Zhang et al. (2016) to show that the postscreening

model-averaging estimator based on the candidate model setWDn still achieves the



asymptotic optimality, namely Ln(ŵs)/ infw∈W Ln(w)→ 1 in probability.

5. Simulation study

We examine the finite-sample performance of JCVMA and compares it with the

popular model selection and averaging methods. A brief presentation of the DGP

and results are provided here, and more details are in the Online Supplement.

5.1 Simulation setup

We consider two nonlinear link functions, the sine function and Tobit model. For

each nonlinear function, we study two cases that differ in the dimension of co-

variates. First, we fix the dimension of covariates to be finite. Second, we allow

the dimension of covariates and the number of candidate models to be divergent.

Furthermore, for each of the cases, we consider whether the correct models are in-

cluded in the set of candidate models. We consider the sample sizes for estimation

as n ∈ {100, 200, 300, 400, 500}, and set the testing size as 1,000; all results are

based on D = 1000 replications.

We compare JCVMA with three information criteria: AIC, BIC and a variant

of AIC, denoted as AICC, which is designed especially for SIMs proposed by Naik

and Tsai (2001). We also compare the smoothed versions of the three information

criteria, which use the values of the criteria for each candidate model as weights

to construct the averaging estimators, namely, SAIC, SBIC and SAICC.
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5.2 Simulation results

We evaluate the performance of the methods from three perspectives. First, to ver-

ify the asymptotic optimality of the JCVMA in Theorem 1, we report the relative

squared loss of each method with respect to the best possible averaging estimator

in Figure 1, where the best possible averaging weight is calculated by minimizing

‖µ̂(w) − µ‖2 over W given the true value µ in the testing set. To save space,

we only report the results of R2 = 0.5, which is closest to our empirical datasets.

Increasing R2 improves the performance of all methods, but the conclusion re-

garding the relative performance of all methods remains the same. It shows that

the proposed JCVMA produces the lowest relative squared loss for both cases of

fixed and divergent dimensions and for all sample sizes. Moreover, the relative

squared loss of JCVMA generally decreases and tends to one when the sample

size increases. The convergence of JCVMA confirms its asymptotic optimality as

stated in Theorem 1. In contrast, the curves of other averaging estimators do not

show clear convergence to one. We also consider the normalized mean squared

prediction error (NMSPE) as an alternative measure of prediction performance,

and the results are available in the Online Supplement.

Next, to verify the convergence of weights when correct models exist in the

candidate model set as shown in Theorem 2, we plot the weights assigned to the

correct models when n increases in Figure 2. Generally, we find that the sum
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Figure 1: Relative squared loss when all candidate models are misspecified

of these weights is monotonically increasing and converges to one as n enlarges.

When R2 increases, the sum of weights on correct models and the convergence rate

of this sum both improve. These results confirm the validity of Theorem 2.

An important implication of the weight convergence is that JCVMA has a

smaller squared loss than other averaging estimators that lack weight convergence

and fail to assign positive weights to correct models, as shown in Corollary 1.

Figure 3 confirms this corollary, showing that the relative squared loss of JCVMA

with respect to the best possible averaging estimators that only use misspecified

models is indeed less than one and generally decreases as n increases. This relative

squared loss also decreases when R2 increases.



We also consider the cases when p > n and employ model screening. The

results are qualitatively similar and provided in the Online Supplement.
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Figure 2: Sum of weights assigned to correct models

6. Empirical applications

In this section, we apply our method to two empirical applications. The first studies

the relationship between financial development and inequality using cross-country

data, and the second examines US firm sales growth. While the use of aggregated

data largely averages out micro-level noise, the cross-country study may be subject

to substantial heterogeneity and omitted variables. In contrast, the corporate

analysis using firm-level data enjoys more abundant and homogeneous data, but

it also unavoidably suffers from potential outliers. Thus, by analyzing two types
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Figure 3: Convergence of Ln(ŵ)/ infw∈WF
Ln(w)

of datasets, we can explore how our method performs in different environments.

6.1 Financial development and income distribution

Given the substantial cross-country difference in inequality and the level of financial

development, it is of particular interest for both academics and policy makers to

understand whether and how financial development affects the income distribution.

In this section, we revisit the relationship between financial development and the

distribution of income, first studied by Beck et al. (2007). Our response variable

is the growth rate of Gini coefficient (G). We measure financial development by

private credit (P ), which is a logarithm of credit by financial intermediaries to the

private sector divided by GDP. Other explanatory variables include the logarithm

of the initial Gini coefficient (Ginit), initial human capital stock (Hinit) measured
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by the logarithm of secondary school attainment in the initial year, international

openness (O) measured by the sum of exports and imports divided by GDP, and

inflation (I). See Beck et al. (2007) for more details on the variable definitions and

constructions. We employ the same dataset as Beck et al. (2007), which covers

78 countries over the period from 1958 to 1997. After deleting missing values, we

obtain a sample containing n = 256 observations.

Economic theory suggests that the impact of financial development on income

distribution may be two-fold, because, one the one hand, improvement in the fi-

nancial system may help reduce inequality by relaxing constraints for the poor

who lack collateral and credit histories (Beck et al., 2010), but on the other hand,

the poor mostly rely on informal financial sources and thus may benefit less from

such an improvement than the rich. Therefore, the (net) impact of financial de-

velopment on the income distribution is likely to be nonlinear, as suggested by

Greenwood and Jovanovic (1990).

To model the potentially nonlinear relation between financial development and

income distribution and account for the model uncertainty, we apply the proposed

JCVMA to the SIM with two sets of covariates. The first includes the five covari-

ates (P,Ginit, Hinit, O, I) in Beck et al. (2007), leading to 25 − 1 = 31 candidate

models. The second set additionally includes the multiplicative terms of every two

covariates to control for potential interaction effects, thus containing 15 regressors
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in total and leading to 215 − 1 = 32767 models if one considers all possible combi-

nations of 15 regressors. In the second case, estimating and averaging all possible

models is computationally formidable, and thus we employ the ordering-based

prescreening discussed in Section 4.
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Figure 4: The bar diagrams of model-averaging weights

The case of 5 covariates The case of 15 covariates

Figure 5: Growth of Gini coefficient: True vs. estimated values

We first examine how the JCVMA weights are distributed across candidate

models. Figure 4 presents the histogram of weighs for each model in the two cases
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with different sets of covariates. Clearly, in both cases the weights concentrate on

only a few models. In the case of 5 covariates (left sub-figure), roughly 90% of

the weights concentrate on two candidate models, and in the case of 15 covariates

(right sub-figure) the two most heavily weighted models account for 97% of the

weights. It happens that financial development (P ), the variable of interest, is

always included in one of the top two models in both cases.

Given such weight distributions, we then investigate the relation between fi-

nancial development and the income distribution focusing on the most heavily

weighted model that contains this covariate. Generally, the total effect of a co-

variate in SIMs should be jointly inferred by the coefficient estimates and the

estimated link function. We find that for the model that includes financial devel-

opment, the estimated coefficient of financial development is significantly positive

at the 5% level, where the confidence interval based on JCVMA is obtained by

bootstrapping with 500 resamplings. Figure 5 plots the true and predicted values

of the Gini coefficient growth against the linear function xTβ for the most heav-

ily weighted candidate SIMs, which include financial development. It is revealed

that the estimated link function is positive for small values of xTβ but negative

when xTβ is moderate or large. These estimation results jointly imply that for a

portion of observations, the effect of financial development on the growth of Gini

coefficient is significantly negative, which explains the negative overall effect of
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OLS as reported by Beck et al. (2007). However, this effect is significantly positive

for observations with relatively small values of xTβ. The variability of the link

function implies that financial development does help alleviate income inequality

when the degree of inequality is stable with little inflation, but in some countries,

e.g., Korea, Indonesia, and several European countries in the 1960s-1970s with

particularly high inflation, financial development further accelerates the growth

of inequality. Our results are consistent with the economic theory that financial

development exerts two-fold effects depending on the economic and social status

(Greenwood and Jovanovic, 1990; Beck et al., 2010).

Next, we examine the performance of JCVMA in predicting the growth of Gini

coefficient. We consider the pseudo out-of-sample prediction over time by dividing

the entire time period into a training and a testing subsample. We estimate the

parameters, link functions and weights of each candidate model from the training

set, and use these estimates to predict the response variable in the testing set.

To reduce randomness, we vary the division point and set it at 1987, 1988, 1989,

1990, 1991 and 1993, so that the first subsample, which is used as the training

set, consists of approximately 60%, 65%, 70%, 75%, 80% and 85% of the entire

sample, respectively. Accordingly, the second subsample is used as the testing set.

This setup also allows us to examine how the competing methods perform across

different training sample sizes. We follow Hansen (2008) to evaluate the compet-
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Table 1: MSPE of growth of Gini coefficient

Training ≈ 0.6n ≈ 0.65n ≈ 0.7n ≈ 0.75n ≈ 0.8n ≈ 0.85n

sample size 154 165 173 190 197 216

5 covariates

JCVMA 0.860 0.643 0.904 0.893 0.907 0.901

AIC 0.849 0.646 1.435 1.179 0.924 0.794

BIC 0.840 0.646 0.911 0.909 0.912 0.995

AICC 0.840 0.646 0.911 0.904 0.924 0.794

SAIC 0.865 0.644 1.263 1.010 0.918 0.794

SBIC 0.840 0.646 0.911 0.909 0.921 0.993

SAICC 0.871 0.692 0.951 0.953 0.982 1.066

Full 1.000 1.000 1.000 1.000 1.000 1.000

15 covariates

JCVMA 0.983 0.748 0.892 0.864 0.616 0.559

AIC 1.000 0.772 0.840 1.045 0.888 0.915

BIC 0.997 0.752 0.763 0.901 0.644 0.560

AICC 1.676 1.106 0.840 1.745 0.888 0.560

SAIC 1.000 0.772 0.840 1.045 0.888 0.915

SBIC 0.997 0.752 0.763 0.901 0.644 0.560

SAICC 1.676 1.106 0.840 1.745 0.781 0.594

Full 1.000 1.000 1.000 1.000 1.000 1.000

Notes: All numbers are normalized by dividing the MSPE of the full SIM, so a value smaller

than 1 suggests a better prediction than the full SIM. The upper panel considers 5 covariates,

and the bottom panel considers 15 covariates including both level and interaction terms.

ing methods according to the mean squared prediction error (MSPE) defined as

MSPE = n−1
test ‖ŷ − ytest‖2 − σ̂2, where ytest is the response variable of the testing

set, ŷ is its predicted value, and σ̂2 = (n − 1)−1
∑n

i=1(yi − ȳ)2 is the estimated

variance of yi based on the entire sample with ȳ being the sample mean of yi.

The results are presented in Table 1. All numbers are divided by the MSPE of

the full SIM, so that a value smaller than 1 suggests a better prediction than the

full SIM. Table 1 shows that JCVMA performs the best in 9 of 12 cases. Even
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when JCVMA does not produce the lowest MSPE, it is close to the best method,

suggesting its robustness, while the performances of other methods greatly vary

across cases. Moreover, we find that the superiority of JCVMA becomes more

obvious when the number of covariates grows from 5 to 15, suggesting that the

method may be particularly useful in the presence of a large degree of uncertainty.

6.2 US firm sales growth

Our second application focuses on predicting the sales growth of US manufacturing

firms using a wide range of potential covariates. Our prediction is based on the

first-order lagged values of 12 potential covariates, namely, Tobin’s q, cash flow,

property, plant, and equipment (PPE), logarithm of total assets, level of sales,

capital expenditure, leverage, earnings before interest and taxes, total liabilities,

price-to-book (P/B) ratio, net income, and Z-score. All variables are collected

from Compustat, and we use the sample from 2000 to 2006 to avoid the severe

economic crisis broke out since 2007, during which the functional relation among

financial variables may change remarkably from that of other years. After removing

the missing data and firms with less than 3 observations, we obtain a sample of

n = 1, 141 observations.

As in the first application, we employ ordering-based pre-screening to reduce

the number of candidate models, and use the same method to choose the opti-

mal bandwidth. To evaluate the pseudo out-of-sample prediction performances of
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JCVMA and competing methods, we divide the entire time period into two sub-

samples at 2002, 2003, 2004 and 2005, such that the first subsample used as the

training set consists of approximately 50%, 64%, 78% and 90% of the entire ob-

servations, respectively. We evaluate the prediction performance using the MSPE,

and the results are presented in Table 2 with all numbers normalized by dividing

the MSPE of the full SIM as above.

Table 2: MSPE of corporate sales growth

Training ≈ 0.50n ≈ 0.64n ≈ 0.78n ≈ 0.90n

sample size 575 728 886 1025

JCVMA 0.597 0.305 0.176 0.057

AIC 1.983 0.915 1.000 0.335

BIC 0.738 0.420 0.204 0.175

AICC 2.929 0.816 1.383 0.335

SAIC 1.975 0.646 1.000 0.287

SBIC 0.738 0.420 0.204 0.175

SAICC 0.646 0.336 0.239 0.052

Full 1.000 1.000 1.000 1.000

Notes: All numbers are normalized by dividing the MSPE of the full SIM, so a value smaller

than 1 suggests a better prediction than the full SIM.

Table 2 shows that JCVMA produces the most accurate prediction in most of

the cases, except when the training size is approximately 0.9n. Particularly, when

the training sample is 0.5n, the MSPE of JCVMA is more than 40% lower than

that of the full model and is approximately 8% lower than that of the second-best

method, SAICC. When the training size increases to 0.64n and further to 0.78n,

JCVMA improves over the full model even more remarkably, and outperforms the



second-best methods SAICC and SBIC by almost 9% and 14%, respectively. Even

when JCVMA is not the best method for the training size of 0.9n, it produces the

second-lowest MSPE, which is very close to that of the best method, SAICC. Fur-

ther examination reveals that JCVMA tends to assign relatively large weights for

small models, and this fact partly explains the large discrepancy between JCVMA

and the full model and suggests that many covariates may have weak predictability

for sales growth.

From the two empirical examples, we can see that JCVMA performs robustly

well in prediction for different types of data, while the performance of the compet-

ing methods varies remarkably across datasets. By accounting for nonlinearity and

model uncertainty, the proposed JCVMA also provides new economic insights.

7. Concluding remarks

This paper proposes a model-averaging method to address the model uncertainty

in single-index models, and our averaging method allows the numbers of covariates

and candidate models to diverge when the sample size increases. We also propose

model averaging based on regularized estimation and prescreening to deal with

many covariates and candidate models. We demonstrate the superior properties

of the proposed method when all candidate models are misspecified and when

correct models are available in the candidate model set. Some of our theories
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and techniques, including the weight convergence, the treatment of diverging di-

mension, and regularization-based averaging, can be applied or extended to other

semi-/non-parametric models.
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A.1 Conditions for Lemma 1

Appendix

This appendix provides additional conditions for Lemma 1 and Corollary 2. Some

detailed explanations are provided in the Online Supplement.

A.1 Conditions for Lemma 1

The following regularity conditions are required for the consi stency of the NLS

estimator and its cross-validation version for each candidate model.

Condition A1.1. (i) The kernel function k(s) is a bounded symmetric density

with a compact support; (ii) The following quantities are finite:
∫
|τk′(τ)| dτ ,∫

τ 2|k′(τ)| dτ ,
∫
k
′2(τ) dτ ,

∫
|τ |k′2(τ) dτ and

∫
τ 2k

′2(τ) dτ , where k
′
(s) is the first-

order derivative of k(s).

Condition A1.2. (i) max1≤s≤Sn hs = o(1). (ii)
∑Sn

s=1 n
−1h−3

s ps = OP (1). (iii)

max1≤s≤Sn(nh4
s + h−1

s )/M2
nnd

2
n = O(1).

Condition A1.3. (i) There exists a universal constant C̄ > 0 such that max1≤s≤Sn

max1≤i≤n ‖x(s),i‖ ≤
√
psC̄. (ii) max1≤s≤Sn max1≤i≤n |xT

(s),iβ
∗
(s)| and max1≤s≤Sn

max1≤i≤n |x(s),irβ
∗
r | are bounded. (iii) max1≤s≤Sn max1≤i≤n

∣∣∣g(s)(x
T

(s),iβ
∗
(s))
∣∣∣ = OP (1).

(iv) There exists a constant c such that min1≤s≤Sn minr:1≤r≤ps,β∗(s),r 6=0 |β∗(s),r| > c >

0. (v) max1≤s≤Sn(nSnps)
−1/2‖∂

∑n
i=1{µi −

∑n
j 6=iK(s),ij(β

∗
(s))µj}2/∂β(s)‖ = OP (1).



A.1 Conditions for Lemma 1

Condition A1.4. (i) There exists a constant C̄ such that∫
ρ(s)

(
v1, . . . , vk−1, t−

ps∑
l 6=k

vl, vk+1, . . . , vps

)
dv1 . . . dvk−1 dvk+1 . . . dvps < C̄

uniformly for s and t. (ii) There exist some constants c and C̄ such that c <

f(s)(x
T

(s),iβ
∗
(s)) < C̄ almost surely for s = 1, . . . , Sn; i = 1, . . . , n. (iii) There exists

a universal constant C̄ such that |f ′(s)(xT

(s),iβ
∗
(s))| < C̄, |f ′′(s)(xT

(s),iβ
∗
(s))| < C̄ almost

surely for s = 1, . . . , Sn; i = 1, . . . , n. (iv) There exists a constant G > 0 and

ω(s) (v1, . . . , vk−1, vk+1, . . . , vps) > 0 such that

∣∣ρ(s) (v1, . . . , vk−1, t1, vk+1, . . . , vps)− ρ(s) (v1, . . . , vk−1, t2, vk+1, . . . , vps)
∣∣

≤ Gω(s) (v1, . . . , vk−1, vk+1, . . . , vps) |t1 − t2|,

for any s and k, where
∫
ω(s) (v1, . . . , vk−1, vk+1, . . . , vps) dv1 . . . dvk−1 dvk+1 . . . dvps

<∞ and
∑ps

r=1,r 6=k
∫
|vl|ω(s) (v1, . . . , vk−1, vk+1, . . . , vps) dv1 . . . dvk−1 dvk+1 . . . dvps

< ∞ uniformly for any s. (v) f ′(s)(t) and f ′′(s)(t) satisfy the Lipschitz condition,

i.e., there exist two constants c1 and c2 such that |f ′(s)(t1) − f ′(s)(t2)| ≤ c1|t1 − t2|

and |f ′′(s)(t1) − f ′′(s)(t2)| ≤ c2|t1 − t2|; (vi) φ′(s)(t) and ϕ′(s)(t) satisfy the Lipschitz

condition.

Condition A1.5. (i)For any s = 1, . . . , Sn, the objective function H(s),n(β(s))

defined in (2.1) is twice continuously differentiable. (ii) There exists a constant

c0 > 0 such that

min

[
min

1≤s≤Sn
λmin

{
∂2H(s),n(β∗(s))

∂β(s)∂β
T

(s)

}
, min

1≤s≤Sn
min

1≤j≤Jn
λmin

{
∂2H

[−j]
(s),n(β∗(s))

∂β(s)∂β
T

(s)

}]
≥ c0 > 0.
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Supplementary Materials

The Online Supplement (Suppfile.pdf) contains some explanations of conditions,

technical proofs, detailed simulation studies and another empirical example.
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