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This file contains some explanations of conditions, technical proofs and
other results of simulation studies. Specifically, Section [S1| provides expla-
nations of conditions in Appendix and conditions needed for Corrolary 2|
Section [S2| contains detailed simulation setup and additional numerical re-
sults. Section presents the proofs of lemmas, theorems and corollaries.

Section discusses the related methods.
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S1 Conditions

This section provides some detailed explanations for the additional condi-

tions in Appendix.

S1.1 Conditions for Lemma [1]

Condition S.1. (i) The kernel function k(s) is a bounded symmetric
density with a compact support. (i2) The following quantities are finite:
[k (T)|dr, [ 72K (7)|dT, fk‘lQ(T) dr, f|7’|l€/2(r) dr and fTZk‘IQ(T) dr,

where k'(s) is the first-order derivative of k(s).

These are common restrictions on the kernel function in nonparametric
statistics, such as Lemmas .2—.4 in Ichimura (1993) and Condition (C.5) in

Zhu et al.| (2019).

Condition S.2. (i) max;<.<g, hs — 0. (i) .27, n~'h;3p, = Op(1). (i)

max <s<g, (nh? + ht)/M3nd? = O(1).

This condition pertains to the bandwidth of the averaging estimator. S,,
and ps appear because we need to solve 5, candidate models simultaneously.
The similar conditions are also used in Condition (C5) in|Wang et al.| (2011)

and Condition (C.5) in |Zhu et al. (2019).

Condition S.3. (i) There exists a universal constant C' > 0 such that
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max <s<s, Maxi<icn [X(s)il < /PsC. (i) maxi<ocs, maxi<icn X0, 8]
and maxi<s<g, MaXi<i<n |T(s)irFs| are bounded. (71) max;<s<g, Maxi<;<n
9(s)(X(5)iB8(s))| = Op(1). (iv) There exists a constant ¢ such that min; <<,
minya<r<p,.gr, 0 Bl > € > 0. (v) maxi<oes, (nSaps) 7210 300,

{1 = 2750 K045 (Bis) 113} /0B | = Op(1).

Condition|S.3(7)|holds if each element of x; is uniformly bounded, an as-

sumption also imposed by Radchenko| (2015, Assumption Al). Conditions

1S.3(%¢)| and [S.3(z:2)| require that the quasi-true parameter is not abnormal

so that the estimator for By is well-behaved. Condition guarantees
that the nonzero parameters, BZ‘S)J,, have a uniform lower bound. Condition
requires that the difference between p and the theoretical estima-
tor from the s" candidate model, K (8, ), is smooth enough around
H(ks) such that there is sufficient information to estimate the quasi-true pa-
rameter H{s). V/Ps and /S, appear in the left-side denominator in this
condition, because |03 7 {11 — D77 Ks).ij(B())ti 12 /0B || s of order
\/Ps and there are S,, candidate models.
Let p(s)(v1, ..., vp,) denote the joint density function of x4 1067, . . .,

m(s),psﬂgs for the s™ candidate model, where X5 = (T(5)1, ..., T(s)p,)" and

Bisy = (BY,....5;,)" Let f5(t) denote the density of x5

s

), and de-

note f(,)(t) and f{)(¢) as the first and second-order derivatives of f((t),
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respectively. Further let ¢ (t) = g(s)(t) f(5)(t) and @ (t) = g(zs) (t) fis)(t).

Condition S.4. (i) There exists a constant C' such that

Ps
/p(s) (vl,...,vk_l,t— ZUZ,Uk+17...,UpS> dvy ... dvg_1 dvggq ... do,, < C
14k

uniformly for s and t. (ii) There exist some constants ¢ and C' such that
c < f(s)(xr(fs) i,@?s)) < C almost surely for s = 1,...,S,; i = 1,...,n.
(7ii) There exists a universal constant C' such that | Flsy(x(.:8()] < C,

/(o) (X(5).8()] < C almost surely for s = 1,...,8,; i = 1,...,n. (i)

There exists a constant G > 0 and w(s) (v1, - . ., Vg—1, Vi1, - - -, Up,) > 0 such
that ‘p(s) (V15 Vet Ty Vgt - -5 Upy ) = Ps) (V15 -+ o3 Uke1s B2, Uty - - -5 Upy)

< Gusy (U1, -+ s k=15 Vkg1s - - - Up, ) [t1 — L2, for any s and k, where

Jwes) (01, U1, Uty < -2, 0p,) dor . vy dvgyg - .. do,, < oo and Zi’;l’#k
[ Nolwesy (01, oy Vg1, Vgt -« 0p,) dog o dog_g dvgyg ... do,, < oo uni-

formly for any s. (v) f(,(t) and f(;)(¢) satisfy the Lipschitz condition, i.e.,
there exist two constants ¢ and ¢; such that [ f{; (t1) — f(,)(t2)| < e1lts — o]
and [ f((t1) — flo)(ta)| < calts — tal; (vi) ¢, (t) and @[, (t) satisfy the Lip-
schitz condition.

This condition imposes restrictions on the joint density of x4 157, ...,

Ps
o are

T(s)p. 3y, and the density of b %(s),0r. Especially, when {z( .
independent, fi(t) = [ pesy(v1, ..., 06-1,t — Zf;k Ul Vkt1s - - - Up,y ) AUy . .

dvg_1 dvgyr ... dup, because of the convolution product. To illustrate this
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condition, we can consider the simple case where each z (), is i.i.d. N(0,1),

then x(s),,.85 ~ N(0, 5;%) and

Ps
f(s)(t) :/p(s) (Ul,...,vk_l,tZvl,vkﬂ,...,vps) dvy ... dvk—1 dvk41 - . . dop,

I#k

is the density of N(0,> ", ﬁif)r) In Conditions|S.4(i)|and [S.4(4i)} if B; =

1for r=1,...,ps, then | f ()] < (27)~1/% and we can take C' = (27)~V/2.
Condition is also similar to Condition (C.2) in Zhu et al.| (2019)).
Condition ensures that f(,)(x(;) ;8(,)) and f( (x(, ,B(,)) are
both uniformly bounded. From the discussion of Condition [S.4(7), we have
|f(,s)(X(Ts),i6>(ks))| = (2me)™/? %21(6&2),”71 < (2me)~'/? and |f(/;) (X(Ts),iﬁzﬁs)ﬂ =

(2m)~1/2 f;l(ﬁ(*s%ﬁ)_:sp < (27)~Y2 uniformly for s and i.
Condition guarantees that the joint density is Lipschitz contin-
uous so that the data are smooth around x(TS) Tﬂz‘s) .. For example, if each

T(s)r is 1.i.d. from N(0, 1),

|p(s)(’U17...,/kal,tl,/uk+17...71)ps)_p(s)('U17.‘.7Uk717t271)k+1,...71}p5)
o0 (55) o (-5 |
xp | — —exp | —

2,3;;2 2ﬂ;2

1 Do 2 1
< — L . t1 — tal.
RO [ § R ( > 2@3‘2) @rey gz~ b

i=1,i%k

1 > v} 1
< - i) -
S e ORI, B ( :12# 2@*2) @n)1725:

Then, we can take G = (27)"'/2¢* 2exp{—1/2} according to Condition

and

W(s) (Uh s 7v(k—1)a U(k?-i-l)) s 7vps) =
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Ps -1 Ps
(27r)_(p5_1)/2( H 5:) exp{— Z 2‘1%’25;‘_2}.

i=1,i#k i=1,i#k

Further, if ¥ =1forr=1,...,ps, we have

/W(s)(vl,...,vk1,vk+1,...,vps)dv1 oo dvg_y dvgyy ... dvy, =1 and

ps
E / vt wisy (U1, - oy Upm1, Uty - -5 Up, ) Aoy o vy AUy - .. dup,
I=1,1k

= (2/m) P2 < 1.

Condition requires that the first and second-order derivatives
of the density fr)(-) have a stronger continuous property so that there is
enough information around the quasi-true parameter ﬁ’("s). When each z ),
is 1.id. from N(0,1), we have |f(, (t1) — f(,(t2)] < (2m) 712, — to| and
£y () = [l (t2)] < (2/m)Y3|ty — ta|. Conditions w and [S.4(vi)| are
also similarly used in Lemmas .2—.4 of Ichimural (1993) and Condition (ii)
of |[Liang et al| (2010). Note that we require uniformity across s in this
condition because our averaging allows the number of candidate models to

diverge.

Condition S.5. (i)Forany s = 1,...,5,, the objective function H,) (8 )

defined in ({2.1]) is twice continuously differentiable. (i) There exists a con-
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stant c¢g > 0 such that

0?Hs (Bl O*H ) (B],)
i i >\min — ) i )\min — Z > 0.
o [m { 0808 [ imz 08By, [T

1<j<Jn

Condition |[A1.5is crucial for the convergence of B(s) and B[(;)j ]. Condi-

tion is the same as the condition of Lemma 5.4 in |[Ichimuraj (1993)),
and it requires the smoothness of the objective function. Condition
holds if there exists a local maximum for every s and can be roughly re-
garded as a minimum-eigenvalue requirement of the “Fisher information”
matrix. When J,, and 5, are divergent, we need to restrict the eigenvalues
of “Fisher information” across all blocks and candidate models, and thus

minlgsgsn and minlgjgjn are needed.

S1.2 Conditions for Corollary

The following conditions are required to prove Corollary [2]

~R
Condition S.6. For s =1,..., 5, and r = 1,...,p;, the r*" element of B,

obtained from (4.13)), Bg)’r, has a limiting value Bg%. Furthermore,

20 R« _ a—1/2 @y
lg%nHﬁ(s) /3(5) —OP(” Sn)?

~R[—J]

B — ﬁﬁ; =Op{(n— Mn)a_I/QSZ} )

max max
1<s<Sn 1< <Jn

~R[—7
where a € (0,1/2), v > 0, and ﬂ(s[) ! is the CV estimator obtained from

the regularized estimation in (4.13)), but excluding observations of the j*
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block.

This condition imposes restrictions on the distances between the quasi-
Rx . . ~R ~R[—j]
true parameter 3,y and the two regularized estimators, B, and B, ", re-
spectively. Similar results have been shown by |Radchenko| (2015)) in a study
of regularized estimators for SIMs, and the author focused on the deviation
between the estimator and the true parameter as their fitted model coincides
~R[—7
with the DGP. With ﬂ(s[) 4 and Bﬁ’g given above, we can similarly define

p(

~ ~ Rx . . . * ~R
w), i(w) and 1™ (w) as the averaging estimators of p using ﬁﬁ), Bis)
~ Rx
and 5(5)7 respectively. Furthermore, we denote L**(w) as the squared loss
of the regularization-based averaging estimator and £ = infyeyy L2 (w).

For s = 1,...,5,, let C, = {T‘B{E)J £ 0 or Bg;r £ 0} and denote the

cardinality of C; as gs.

Condition S.7. (i) &8 Stngala(n — M,)*"V/2 = op(1), where gmax =

maxlgsggn qs. (ZZ) ff_lannn = 0p<1>.

This condition is a regularization version of Condition [6, and provides
restrictions on the relative divergent speeds of S, &, guax and d,. Com-
pared with Condition Condition CONCEINS (nmax rather than pyay,
and it is likely to hold if g, grows at a slow speed. Note that ¢, is re-
lated with the “variable selection consistency”, an important property of

Lasso-type estimators (see, e.g., [Zou, |2006; [Leng;, [2010).
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Condition S.8. There exists a positive p such that, for any s =1,...,5,

and any p, X 1 vector e consisting of 1 or 0, we have

n ~ (4) ~ T (4)
1 ag(s) (X’(I‘S)7’Lﬁ s ) ag(s) (X(s),le s )
A{n > (e(s> © (o) ) oel, | b =0r(lewlh), (SL1)

T
P 9Bs) 9Bs)
and
n ~[—B(1)] T (4) ~[—B()] T ()
\ l o © 69(3) (X(s),iﬁ(s)) 89(5) (X(s),iﬁ(s)) ool _ OP(HG( )
max S - S 9
N3 ’ aﬁ(S) 8,8(TS) ©

(S1.2)

uniformly for any ,Bglg, . ,BEZ)) € O(B(y), p), where ® denotes the Hadamard

s

product.

This condition is an extension of Condition [5} It degrades to Condition

Bif el = (1, -, D1

S2 Simulation setup and additional results

S2.1 Benchmark experimental designs

To verify the theory in Section [3, we consider two exemplifying nonlin-
ear functions that associate the response variable and covariates. For each
nonlinear function, we study two cases that differ in the dimension of co-
variates. First, we fix the dimension of covariates to be finite. Second, we
allow the dimension of covariates and the number of candidate models to
be divergent. Furthermore, for each of the cases, we consider whether the

correct models are included in the set of candidate models.
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Ezample 1: We follow |[Naik and Tsai| (2001)) to consider the following DGP
Y = p; + ce; = sin(nx;B/6) +ce; (i=1,...,n),

where x; is a p X 1 vector generated from a multivariate normal distribution
with mean zero and covariance matrix 3 = (0.5/=70), .. The settings of
p and 3 vary across the four situations as specified below. ¢; is i.i.d. and
follows a standard normal distribution. ¢ controls the signal-to-noise ratio,
and we vary ¢ such that R* = var(y;)/var(y;) ranges from 0.1 to 0.9.

Ezample 2: We follow Kong and Xia| (2007) and Ichimura) (1993)) to consider

the Tobit DGP as
yi = (i +ce)(p; +ce; >0) = (x; B+ ce))[(x;B+ce; >0) (i=1,...,n),

where I(-) is an indicator function, and the remaining settings are the same
as Example 1.

For each nonlinear link function, we consider the following four situa-
tions.

(1) Finite dimension with all candidate models misspecified
We fix p = 7 and set the coefficient vector as 3 = (1,1.5,1,0,0.1, —1.5,1.5)".
To construct misspecified candidate models, we include the first covariate
but omit the last in all candidate models. The remaining covariates are un-

certain, but at least one of them is included, which leads to S,, = 2°—1 = 31
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candidate models.

(2) Finite dimension with correct candidate models
In this case, we set 8 = (1,1.5,0,1,0,—1.5,1.5)", where two of the coeffi-
cients are set to zero to increase the number of correct models for demon-
stration purposes. All candidate models include the first and last covariates
but differ in the specification of the remainders, so correct models are con-
tained in the candidate model set.

(3) Divergent dimension with all candidate models misspeci-
fied
To mimic the cases where the dimension of covariates increases with the

sample size n, weset 3 = (1,(1.5,1,0,0.1, =1.5,1.5,1,0,0.1, = 1.5,.. )y 5,137,

1,1.5)", where the subscript [1.5n'/%] is the speed at which the dimension
of B increases and [-] ascertains the ceiling of a number. We include the
first covariate but omit the last two in all candidate models to construct
misspecified candidate models as above. To reduce the computational bur-
den, we employ the pre-screening method based on an ordering of covariates
as discussed in Section [4] such that the number of candidate models also
increases at a rate of [1.5n/3].
(4) Divergent dimension with correct candidate models

The setting is similar to (3), except that we include the first and last two
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covariates in all candidate models and set

8 =(1,(1.5,0,1,0,0,~1.5,0,1.5,0,1,0,0,~1.5,0, .. )y 557, 1, 1.5)".

We consider the sample sizes for estimation as n = 100, 200, 300, 400
and 500, and set the testing size as 1,000; all results are reported based on

D = 1000 replications.

S2.2 Implementation and comparison

To implement the proposed JCVMA, we set the number of observations in
each CV block to be M,, = 50. Robustness checks suggest that the results
are qualitatively similar as long as there are sufficient observations in each
block. Following |Yu et al. (2014])), we suggest to take the bandwidth of order
k=5 log™Y %(n) and choose the optimal  via cross-validation. We follow
the convention to use the Gaussian kernel K (u) = exp(—u?/2)/v/27 when
estimating each candidate model.

We compare JCVMA with three information criteria: AIC,BIC, and a
variant of AIC, which is designed especially for SIMs. The AIC and BIC

scores of the s candidate model are given by

AIC, = nlog(5?) + 2trace{K ) (B,)},

BIC, = nlog(c?) + log(n)trace{K (B(S))},
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where 72 = n7'|ly — fiy)|I*. Naik and Tsai (2001) proposed a variant of
AIC based on the Kullback-Leibler distance as
n + trace {H(S) + K(s) (,6(5)) — H(S)K(s) (,8(5))}

AICC, = log(5?) + — =~ ~ 3
n — 2 — trace {H(S) + Ky (3(3)) —H»)Ky) (,3(5))}

I

A~

where ﬁ(s) = {\7(5) (V(T

Vi) = {055 (X0 180))/0Bays - - -+ 0G() Xty nBe) ) /0Bis }

B(s)=Bs)

~ —~ T
- {/'dl(s) (X?S),lﬁ(s))x(5)7 c 7/.’5/(3) (ng),nﬁ(s))x(s)} )

and g, (-) denotes the derivative of gs)(-).

We also compare the smoothed versions of the three information crite-
ria, which use the values of the criteria for each candidate model as weights
to construct the averaging estimators, namely, SAIC, SBIC and SAICC,
e.g., SATICC, = exp(—AICC,/2)/ S5, exp(—AICC,/2).

We evaluate the performance of the methods from three perspectives.
First, since our theory shows the asymptotic optimality of the JCVMA, we
report the relative squared loss of each method with respect to the best

possible averaging estimator, namely

D
DY inf 140w,
d=1

(d (d)

where p(? is the true value of the testing set, ' is the predicted value

73 (d)

produced by each method, L' = 'Y — pu@||? is the loss, infwep L9 (w)
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is the minimum squared loss over all possible averaging estimators, and the
superscript (d) denotes the d replication.

Second, we compare the prediction performance of various methods
using the normalized mean squared prediction error (NMSPE), which is
defined by NMSPE = D' Y7, L\ Lfgi)n, where Ll(flli)n is the minimum
squared loss over all candidate models.

Finally, to verify the consistency of weights when correct models exist
in the candidate model set as shown in Theorem [2, we plot the weights
assigned to the correct models when n increases. We also examine the
validity of Corollary [1| by reporting the relative squared loss of JCVMA
with respect to the best possible averaging estimators using only misspec-
ified models, namely D~'>>7 LY(W)/ infwew, L (w), where W is the

JCVMA weight vector obtained by minimizing CV ;, (w) as in (2.3)).

S2.3 Simulation results

The upper four diagrams in Figure compare the NMSPEs of the eight
methods when all candidate models are misspecified. We report the results
of n = 300, while those of other sample sizes are highly similar and are thus

provided in the Online Supplement. Again, we find that JCVMA produces

the lowest NMSPE in almost all cases, followed by AICC or SAICC. The
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All candidate models are misspecified

sin(-), finite-dim. sin(-), divergent-dim.
3.0 S 3.0
% -+ FULL ¥ AICC - SAICC
N W —*— JCVMA -4~ BIC —#- SBIC "
2.5 N L e ac & sAIC 254 ™

2.0 1

1.5

1.0 1

Correct models are included in the candidate set

sin(-), finite-dim. sin(-), divergent-dim.
30 - 10
-+- FULL V- AlCC “+- SAICC /
—#— JCVMA -#&- BIC —#- SBIC 8

—@- AIC & SAIC
6.

4
2.

0

tobit(-), finite-dim.

Figure S.1: Normalized mean squared prediction error (n = 300)
Note: The upper four figures plot the NMSPE when all candidate models are misspecified, and the

bottom four figures consider the cases in which the candidate set includes correct models.
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discrepancy between JCVMA and other methods seems larger in finite-
dimensional cases than in divergent cases and appears to increase with n.
The bottom four diagrams of Figure present the related NMSPEs
when n = 300 and the candidate set includes correct models. In this case,
the difference between the methods appears to be relatively small, especially
when R? is small. Nevertheless, JCVMA continues to perform well with
low NMSPEs and is always ranked among the top three methods, if not
the best in a small proportion of cases. When R? is moderate or large, its
improvement over other methods is particularly large for the Tobit model.
Figures and present the relative squared losses of competing
methods under different levels of R?, and Figures present the nor-

malized mean squared prediction errors under different sample sizes.

S2.4 Simulation under p > n

Thus far, we have studied the finite-sample performance of JCVMA when
p < n. Now we consider situations in which p is larger than n. We set n =
100 and p = 200. The coefficient vector is set as 8 = (1,2,0.1, 3,0.08, 4, 0.06,
5,0.04,6,0.02,0,0,0,0,0,...,0,4)", which is characterized by sparsity. We
consider the misspecified scenario, where the last covariate is omitted by

all fitted models.
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sin(-), finite-dim., R?=0.1

[ -
6%
*' -+- FULL ¥ AlCC - SAICC
T.—#— JCVMA  -A- BIC - SBIC
44 -8 AIC ~&- SAIC

100 200 300 400 500

sample size

sin(+), finite-dim., R?=0.3

300
sample size

100 200

sin(-), finite-dim., R?=0.7

2.00 A :/-———————"—”"—_—'

1.751
1.50 4
1.25 1
100 200 300 400 500
sample size

sin(-), finite-dim., R?=0.9

2.00
1.75 4
1.50 4
1.25 1
1.00 +— T T T T
100 200 300 400 500
sample size

Figure S.2: Relative squared losses when all candidate models are misspecified (sine fun.)

sin(), divergent-dim., R2=0.1

sample size

sin(-), divergent-dim., R2=0.3

2.00 A
1.75 A
1.50 A
1.25 A
160 260 360 460 560
sample size

sin(+), divergent-dim., R?=0.7

N
P J— .
-

100 200

sample size

sin(-), divergent-dim., R2=0.9

100 200

300
sample size
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Figure S.3: Relative squared losses when all candidate models are misspecified (Tobit

fun.)

tobit(+), finite-dim., R?=0.1

-+- FULL ¥ AICC -+~ SAICC
. —* JCUYMA -A- BIC  -®- SBIC
41 . -e AC & SAIC

100 200 300 400 500

sample size

100 200 300 400 500

sample size

tobit(-), finite-dim., R?=0.7

100 200 300 400 500

sample size

tobit(+), finite-dim., R?=0.9

200 300 400
sample size

tobit(+), divergent-dim., R?=0.1

B e

100 200 300 400 500

sample size

3.0

tobit(+), divergent-dim., R?=0.3

D% St s, 4

100 200 300 400 500

sample size

tobit(-), divergent-dim., R?=0.7

=

sample size

tobit(-), divergent-dim., R?=0.9

sample size



S2. SIMULATION SETUP AND ADDITIONAL RESULTS

3.0

All candidate models are misspecified

sin(+), finite-dim.

2.5 1

A

v W+ FULL - AICC
N+ JCVMA  -A- BIC
\ e AC 4 SAIC

- SAICC
—#- SBIC

30

3.0

sin(-), divergent-dim.

2.54

2.0 4

1.5+

1.0 1

3.0

Correct models are included in the candidate set

sin(-), finite-dim.

-+~ FULL
#— JCVMA
-e- AIC

“¥ AICC - SAICC
-&- BIC —#- SBIC
- SAIC

Notes: The upper four figures plot the NMSPEs when all candidate models are misspecified, and the bottom

10

sin(-), divergent-dim.

8_
6_
4_

2_

0

Figure S.4: Normalized mean squared prediction error (n = 100)

four figures consider the cases where the candidate set includes correct models.
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All candidate models are misspecified

sin(+), finite-dim. sin(-), divergent-dim.
3.0 - r 3.0
N ‘\‘.\ -+- FULL ~¥- AICC - SAICC
\\\ 1, —*— JCVMA -&- BIC —#— SBIC
2.5 1 \\\+ AIC 4 SAIC 2.5 1
v,
2.0
1.5 A
1.0
3.0

Correct models are included in the candidate set

sin(+), finite-dim. sin(-), divergent-dim.
30 10
-<+- FULL “¥ AICC - SAICC
#— JCVMA -4&- BIC —#- SBIC / 8

-& AIC & SAIC o
. 6

4_

2_

0

Figure S.5: Normalized mean squared prediction error (n = 200)
Notes: The upper four figures plot the NMSPEs when all candidate models are misspecified, and the bottom

four figures consider the cases where the candidate set includes correct models.
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All candidate models are misspecified

sin(+), finite-dim. sin(-), divergent-dim.
3.0 ™ 3.0
“\.\ -+- FULL ~¥- AICC - SAICC
* W +— JCVMA -4&- BIC —#- SBIC

2.54

257 N L e AC - saC
2.0 4

1.5+

1.0 1

0.4 0.6
RZ

Correct models are included in the candidate set

sin(+), finite-dim. sin(-), divergent-dim.
30 7 10
-<+- FULL “¥ AICC - SAICC
#— JCVMA -4&- BIC —#- SBIC / 8
-@ AIC & SAIC #

6_
4_

2_

0

Figure S.6: Normalized mean squared prediction error (n = 400)
Notes: The upper four figures plot the NMSPEs when all candidate models are misspecified, and the bottom

four figures consider the cases where the candidate set includes correct models.
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All candidate models are misspecified

sin(+), finite-dim.

3.0

2.5 1

W

\

*_ W
b \

-+- FULL
+— JCVMA

\—O-AIC

~¥- AICC - SAICC
-&- BIC 8- SBIC
- SAIC

it(+), finite-dim.

30

tob

sin(-), divergent-dim.

3.0

2.54

2.0 4

1.5+

1.0 1

Correct models are included in the candidate set

sin(-), finite-dim.

-+~ FULL
#— JCVMA
-e- AIC

“¥ AICC
-4&- BIC
- SAIC

- SAICC
—#- SBIC

10
8
6
4

2_

sin(-), divergent-dim.

0

Figure S.7: Normalized mean squared prediction error (n = 500)

Notes: The upper four figures plot the NMSPEs when all candidate models are misspecified, and the bottom

four figures consider the cases where the candidate set includes correct models.
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Since the full model contains more parameters than the number of ob-
servations, it cannot be estimated by standard NLS. An excessively large
p also implies that there are a formidable number of candidate models if
we consider all possible combinations of covariates. Hence, we employ the
regularization method with an L; penalty to estimate the full SIM, and pre-
screen candidate models using the second approach (regularization-based
screening) discussed in Section . Particularly, we vary the tuning pa-
rameter A by taking 10 evenly spaced points between 0.001 (which yields
on average 150 non-zero coefficient estimates across replications) and 0.02
(which forces all coefficient estimates to be zero across replications). Such
a variation of A\ leads to 10 candidate models, over which all selection and
averaging methods are applied to predict the response variable.

Figure[S.§ presents the NMSPEs of the competing methods when p > n
and all candidate models are misspecified. It shows that JCVMA based on
regularized estimation and pre-screening outperforms other selection and
averaging methods, and again its advantage is particularly prominent when
R? is small. When R? is large, the squared losses of all methods are asymp-
totically identical to that of the best single model because all of the candi-

date models perform similarly after this pre-screening.
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sin(-), p>n. tobit(-), p>n.
2.0 8 -+- FULL ¥ AICC
‘\\ #—~ JCVMA  -A- BIC - SBIC 1.75 A1
SO e AIC ¢ SAIC .
1.5 4 .50
1.25 -
1.0 SO S —— 1.00 -
T T ; . 0.75 1 . .
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
R2 R2

Figure S.8: NMSPE when p > n and all candidate models are misspecified

Note: We set p = 200 and n = 100. The NMSPE is defined as D' =2 | L(® /Ll

min*

S3 Lemmas and proofs

For convenience, two new notations should be introduced first. If a func-
tion g(s),ij = Oulan), then g ;/a, is bounded uniformly for any s,i and

J. Besides, if a function gu);; = Oup(a,), then g :;/an is bounded in

probability uniformly for any s,7 and j.

S3.1 Proof of Lemma 1]

To prove Lemma [I, we need several additional lemmas. We first introduce

some quantities which will be useful in the following proof. Denote

1 < . .
Ay mi = | Z 1ikn, (X(5),:8(s) — X(5).i8(s))
J#i
1 . .
Blayni = — > kn.(x{5.80) = X{5.487):

i
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and

1 — . .
Cls)ni = ] Z €ikn, (X(5)i8(s) — X(5).iB(s))-
JF#i

S3.2 Additional lemmas and proofs

Lemma S.1. Under Conditions[1], [ and [A1.1-[A1.] the following equal-

ities hold:
1 n Sh
1 P2 -3, -1
122}5‘“ nps Zl HA(S),nzH OP <]' + ; hs n ps) ) (833>
BlsynilX(s).i = frs)(X(5):8(s)) + Op(h?) + Op(h;Y?n~Y?),  (S3.4)
; ; . S '
 fin - min B il X(s)i 2 ¢+ op(l), (53.5)
/ 2 -3, -1
 ax. 2 n—psHB(s),mH =Op (1 + Z;hs n ps) ; (S3.6)
max max C(s) niX(),: = Op ( max hs_l/2n_1/2> , (S3.7)
1<i<n 1<i<n ’ 1<5< S,
n 1 Sn
Ao 2 —3, -1
12%§n - npSHC(s),nzH OP <; hs n p8> ) (838>
and
A(s) i
D82 | B, O (539

@ *
! (s

where the superscript means the derivate with respect to B,y and |X(s),0

means conditional on X();

)
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Proof of Lemma[S.1]. First, we consider (S3.3). We can show that

B {13k, O Bl) = %0580 %o |

X L . T 3* —XT 3*
_ /LJ(X@),ZZ X().3) 1 [ X380 = %948 ‘X(SM . ($3.10)
h? hs
Let vs) jr = 3(s),5rB(s), =1,...,ps and t X(TS)’i,B?s) ,i=1,...,n. On

the one hand, we consider the case that ﬁﬁks),k # 0. For the k™ element of
(1S3.10),

_ XT 3* —XT 3*
E{uy T(s),ik fﬂ(sm)k ( <s>,zﬁ<s>h (smﬁw) 'X(S)ﬂ}
g (s rws k) o (b — b
/ 10, LIk g ( ( ) ) (U().,315 4 Vs e ) AV 10 AV
o2l i L(s),i = E(s), _ N dve v
#ihs ™ Bloy g (Visyine = V)i K | == ) o) (V6,510 00 V(s ) AV(s) 1 AVGs) i

DPs Ps
—1 px—1
—/Mjhs Biok | D vt = Y vy — Ths | K'(7)

£k 1#k

X Ps) | V(s)gts s V(s),g(k—1)s E(s),i — ZU(S)JZ - ThS’U(S),j(k-&-l)v 0 U(s),jps
1#k

X d7 dv(s) g1 V()i (k—1) AV(s),j(k+1) - AV(s) s

DPs Ps
—1 px—1
—/mhs Bk | D vt = Y vy — The | K'(7)

£k 1#£k

X Psy | V(s)gts s V(s),g(k—1)s E(s),i — Zv(s),jz,v(s),j(k+1), 0 U(s),ips
I#£k

X A7 dv(s),j1-0- dV(s),ji(k—1) AV(s),ji(k+1) - AV(s) i,

Ps Ps
o R e DICEVES SEBPEE N PO

£k 1#£k

x {P<s> V(s),415 +5 V()i (k—1)5 E(s),i Zv(é)ﬂ Ths, V(s),j(k+1)5 -1 V(s),jps
I#k

= P(s) | V(s),d1s e V() ilk—1)s E(s) i ZU()Jl’v()J(kJFl)""’v(S)ijs }
I#k

X d7 dvs),j1--- V()5 (k—1) AV(s),j(k+1) - AV(s) s
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= —Al — AQ. (83'11)

Considering that [ k' (u)du =0, [uk'(u)du = —1 from Condition |A1.1}

Ps Ps
Ay :/ujh§15?s§,lzg D v = > v | K (1)

1#k £k

DPs
X P(s) | Vis)gts oo Vs)i(h—1), E(s)i — Z%),jla U(s),j(k41)5 =+ V(s),jps
I#k

X A7 dvs) g1 dv(s),jike—1) V(s ikt 1) - AV(s) s

Ps
*—1
_/Njﬁ(s),ka/(T)p(S) V()51 Vi), (1) B30 = D V(s),0 V(s),3 (k4105 +o05 V(s), ps
14k

X A7 dvs) j1-- dv(s),jie—1) V(s ikt 1) - AV(s) s

Ds
*—1
=0+ /Myﬂ(s),ms) U().315 w00 V(s),3 (1) E(s),i = D V()30 Vis)Ckb1)s - Vs ps
£k

X d7 dvs),j1-- dv(s),jike—1) V(s ikt 1) - AV(s) s

Ps
*—1
:Njﬁ(s),k//%s) U(s),415 w0 V()5 (k=1)» L(s),i *Zv(s),jlvv(sxa‘(kﬂ)’---’U<s>,m
1#k

X du(s), i1 dV(s),j(k—1) AV(s),ji(k+1) - AV(s) s

= 0.(1), (S3.12)

where the last inequality is due to Conditions [2(27), [S.3(iv)| and [S.4(7)l

Next,

Ps Ps
Az = /Nihglﬂrs;,lk D Vit = Y Vg — Ths | K (7)

£k 1#£k

DPs
x {p<5>,k V(s),415 0 U(s), g (k=1)5 L(s),i — Z%),jl = This, V(s),j(k41)5 -+ V() ,jps
1#k

Ps
— Pk | V)15 V), 1)5 B0 = D V(a0 V(3,3 (kA1) 05 V(o) p }
I#£k

X d7 dvs),j1--- AV(s),j(k—1) AV(s),j(k+1) - AV(s) s
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Ps Ps

—1 p*x—1 ’

= /Ma‘hs Biok | D v | * (T){ms),k V)15 s by = D V()31 = They s oy V) s
I#k I#k

Ps
= P(s)k | V(s),g1s e V(s),i(k—1), Ls),i — Z:U(S),jl7 U(s),j(k+1)s -+ V(s),jps }
I#k

DPs DPs

—1 p*x—1

—/ujhs Bk | D vy k'(T){ms),k U(s),gts ooor By = D V)t = Thiss oess V(s) s
14k 14k

Ps
= P(a)k | Vs)g1s - V(s) ih=1)s Es)i = D V(s).gls V(s) (kb 1)+ V(s) s }
l1#k

X d7 dv(s) g1 V()5 (k—1) V() j(k+1) - AV(s) s

Ps
*—1
—/MjTﬁ<s>,kk'(T){P(s>,k V(e -oos b(ayi = D V(s).gt = Thsy ooy V(s jps
£k

Ps
— ey | V()10 Vo3 k1) Esyi = D V(s Vi) g (kA1) 0 V). s }
1#k

X A7 dv(s),j1--- dV(s),ji(k—1) AV(s),ji(k+1) -~ AV(s) s
= Ql — Qz — Q3

= 0u(1), (S3.13)

where the last equality is based on the following equalities (S3.14)), (S3.15))

and (|S3.16]):

Ps
] < / 1hs B S vy | K (7))

1#£k

Ps
P(s)k | V(s).g1s oo Vs),i(k—1)> E(s)i — Z”(s)’jl = Ths, V(s),j(k+1)5 -+ V(s) jps
1#k

X

Ps
— Do)k | V()15 V), (e 1)s B30 = D V(s),0 V(s),3 (kA1) 005 V(o).
1#k

Ps
*—1
< /Gluj|5<s>,k D 0G| K ()W) (V(5),515 1005 V(3.3 (k- 1)5 (s, 5k 1) 0 V), s )
1£k

X d7 dv(s) g1 dV(s),j(k—1) AV(s),j(k+1) - AV(s) s
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Ps
*—1
= Gl Bl | D Vet /\Tk/(T)IdT/w<s>(v<s>,j1»~--,U(s>,j<k—1>w(s>7j<k+1)7~-~7v<s>,jps)
%k

X d7 dv(s) g1 d(s),j(k—1) AV(s) (k1) - AV(s) s

= 0.(1), (S3.14)

where the last inequality is from Condition [S.4(iv)| the last quality is due
to Conditions [2(4)} |A1.1} [S.3(22)| and [S.3(v)|

Ps Ps
€22 S/\uj\hsfllﬂ(*s_),il D Tl | K @per | V651t = D v = Thss oo V),
1#k £k

Ps
= P(s)k | V().g1s e V(s)g(h=1) L(s)si Z U(s),41s V(s),d(k+1)5 +++) V(s),jps ‘
1#k

X d7 dv(s) g1 dV(s), 5 (k—1) V() j(k+1) - AV(s) s

Ps
*—1
< G/luﬂlﬁ(s),d > vyl | TR (F)wisy (V(s), 15 -+ V() gith— 1) Vs k1) -5 V(). ips )
1£k

X d7 dv(s) g1 V()5 (k—1) AV(s),j(k+1) - AV(s) s

Ps
*—1
:Glujl\ﬁ(s>,k|/Ifk’(T)IdTZ/\ws),jzlws) (V0115 -+ V()5 (k= 1) V(s (k1) -5 U(s).ps )
%k

X dv(s),j1-- dVs),j(k—1) AV(s),j (k1) - AV(s), jps

= 0.(1), (S3.15)

where the last equality is due to Conditions [2(4 )} |A1.1}[S.3(iv) and [S.4(iv)|

Finally,
Ds
Q3] < /Iﬂj||5{§),lkl|7k'(7)| Pk | V@t o b = D Vst = Thisy ooy U(s) i
I£k
Ps
- p(S),k‘ /U(S)Jl’ Tt U(S)vj(k_1)7 t(s)vl - Z U(S)vjh U(8)7](k+1)7 Y U(S)vjps
I£k

X A7 dvgs),j1-- dv(s),jk-1) dV(s),j(k+1) - AV(s), s
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< G185 kP /TQIk"( )|dT/W<s (V)15 -+ Vs) g e-1)> V(o) g +1)
V(s)ips) A(s). g1+ V() 5(k=1) AV(s) (k1) -+~ AV (s) g,

= Oy(hs), (S3.16)

where the last equality is due to Conditions [2(4), |A1.1}[S.3(v)| and |S.4(7v)|

On the other hand, we consider the case that BE‘S)’k = 0. Let t(5),; =
Z’T’S:L#k (s),irB(s) ;+ 1 = 1,...,n. For the k" element of ([S3.10)),

T * T *
g ) (@@ = 2@ k) o (X080 ~ X@4P6 ) |,
h% hs (s),i

wi{sy,ie — B(z(s)i0)} tis),i — t(s),j
== o [ B T ) 2 (V0,1 V) k1) Vi) 41 U a), )

X du(s),j1-e V(s 5i(k—1) AV(s),5i(k+1) - AV(s) g,

Ps
-1
= pihs {z ()i — E(@ () 5k }/ P(s) <t<s>,i = D Vet = TRy oo (s, (k1) Vis) (k1)
1#1,k

U<s>,ps> X A7 du(s),j2--- dV(s),ji(k—1) AV(s),ji(k+1) - AV(s) jp,

-1 -
= pihs {0 — B(@s),5k }/ T)p) | teeri = D, V(a)its - V(s)i(k—1) Us).g(k+1)s - Vs).po
1#1,k

X d7 dugs), g2 dvs),k—1) AV(s),j(k+1) - AV(s), s

Ps
+ pihi H{w o) — Bl g }/ {P<s> <t<s>z D Vet = Thes s (s (k1)

1#1,k

U<s),j<k+1>~--vv<s>,ps> —P@s) |t Z V(s) .3l ++ V(s),3(k—1) V()3 (k+1)5 -+ U(s),ps }
1#1,k

X A7 dv(s) g2 AVs),jk—1) AV(s),j(k+1) - AV(s) s

=0+ 0u(1), (S3.17)

where 0 in the last equality is due to [&'(7)dr = 0 and the O,(1) in the
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last equality is due to Conditions [2(#)} [S.3(z)] and the following inequality:

hfl

S

1£1,k

o (t(s Z U(s)jts -5 Uls),i(k=1)5 U(s),i(k+1) "'vU(S),ps> }

1£1,k

x dr dv(s),jQ...d'U j(k—1) dU (s),5(k+1)- d’U ),jps

<n [ e
I£1,k

- <t<s Z U(s),jls == V(s),j(k—1)> v(s),j(k+1),...,v(s),ps> ‘

I£1,k

X d71 dv(g) jo-.- dvgs) jk—1) AV(s),j(k+1) - AV(s),jips

< Ghy /\k’ NITswis) (Vs 25 s V(s)gth—1)s V(s),0+1)s s V(s)op )
X d7 dvgs jo-.. dvis) ik—1) AV(s) k1) AVs) jps

—G/ITHk” |d7/ () (Vs).325 -+ V(s),300=1) V(s) G (h+1)5 -+ Vis)pa)

x dr dv(s),jg... dU j(k—1) dU (s),5(k+1)- dU $),4ps

where the last equality is due to Conditions|A1.1|and [S.4(w)!

DPs
P(s) <t<s>,i — > Vet = Thas ooy Vs k1) V(s) 1)

/k’(T){ <s>z Zws - sa--~7’U<s>,j(k—1>7v<s>,j(k+1>>-~-7U<s>,ps>

U(S)vps>

(S3.18)

Based on (S3.11)), (53.12)), (S3.13)) and (S3.17)), for the k™ element of
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(S3.10)), we obtain that

. s), ik — s),j XTS i’B*S _XTS '/8*8
& {Mg(l‘( ), 22 o >»J"?)k’ ( (e )h — )> )X(s),z} = Our(1),

S

(S3.19)
which indicates, considering the dimension of (S3.10)) is ps,
1t 1/2
1o, 1 [ b, O 8 = g i) | = Our). (5820
Hence, the norm of the conditional expectation of A’(S)m is
= —— max ZE {,ujkh X80 — X, ﬁfs))‘X@),z}H
< o e B {3 = .00 o
= O,p(pY/?). (S3.21)

Next, from Conditions [2(77) and [S.3(7), we see that the norm of the condi-

tional variance of A'(S) i 1S given by

HV(A'<5> nilX(s).4)l

= (nfl ZHV {“th (X(51.iBs) = X(94B(5))

X(s),i} ‘
maxi<j<n |1y]* max E l1%(s).i — X<s>,j||2k'z X(5),iBls) — X(5,180s) ’X _
n—1 1<j<n h hs (s),i
2maxi <j<n |py]> maxi<s<s, maxi<i<n [|X(s),ql|? 19 ()i — ts).g
= — BTV : R b)) dtis) s
= (n— 1)kl fé‘%"n/ I feoy(ts).5) dis) 5

= 0u(h % pa) / K2() oo by — 7ha) dr

IN

= Ou(hy 3n*1ps)/k/2(7) {fo(ts)i) — Ths fls) ()} dT
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= Ou(hs°n""ps) {f@)(t(s),i)/k,z(f) d7+0u(hs)}

= fis) (Xr([‘s),iﬁzks))OuP (h;?’n* 1p5)

= Our(hin™'ps), (S3.22)

where # lies between t(s), and t(s);—Thg, Oy(hs) in the third-to-last equality

is due to (S3.23)):

’/ f(ls) (f)le(T)T dr

§/|f</s>(t(s),i)|’€ 2(7)7d7+/|f</s>( — [ (t.)| K (r)rdr
< C’/\T|k‘/2(7')d7'+clhs/7'2k/2(7') dr
= O4(1+ hs), (S3.23)

where the last inequality is from and the last equality is due to
Condition [A1.1} Further, from Conditions |A1.1{and [S.4 ()|

(VAL il < Oulhs®n 1p.)E {f@)(t(s),» [#*@ar+ ou<hs)}

h *n~ ps {/f(s t(s) dt(s /k dT+O )}

= 04, (h;*n" 'p,). (S3.24)

Let a, = 322", h;*n 'p,. Combining with (53.22)(S3.24) and according
to Markov’s Inequality, we know for some large 6 > 0, when n is large

enough,
- !/ _ 2 >
P <1I<I;E<D§ nps ZHAS ),ni (s) ‘X(S Z)H 6(ln>
<3 (3 i B >

s 52
npséan Z ZE E {HAls) ni (s ni |X )H2 ‘X(S)vi }]

s=1 i=1
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= (npsda,)” Z Z E{trace( |:{A/(s),ni — E(A (s).mi ‘X(s )i }

s=1 =1

X {A/s) ni ( zs)mi |X(S),i)}T |X(8)7Z}> }
< (npsdan)” Z Zps { max (E[ { Al mi = B(Al) i [%000) }

s=1 i=1

g~ Bl o]}
()Y S IV (g 1)

s=1 i=1

< (0an)” ZEE%E{”V (i X111}
= 0up(671) = 0 as § — oo, (83.25)
which implies, according to van de Geer| (2000),

1<s<S, Nps

max —ZHA(S) ni — B(A(e)milX(s)0) | = Op(an) = Op <Zh 3n—1ps>. (S3.26)

Hence,

1
L S Z 1A% il

< max — Z ”E S) ni|x(5) l)” + max — Z HA(S) ni A(s) nz|x(.s) )H

1<5<Sy, NPs 1<5<Sn NPs
2
< 122{%” 1r£11a<x Ds HE A(s) nz|x(s) H + 123)2, E Z ”A(s ni A(s nzlx(a L)”

=O0p <1 +> h33n1p5> . (S3.27)

s=1

Now the proof of (S3.3) is completed.

Second, we consider (S3.4)) and (S3.5). Under Conditions E m
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and [S.4(v)| we have

E(B(s),nil%(s),i)

=E {khs (ers),iﬁzs) - Xa),]ﬂ?s))\x(s),i}

bsyi = ts) g
:/,Tk< I J) fo)(t).5) At 5

= /k(T)f(s) (t(s),z - hsT) dr

hst?

2
[ R [Tt = e o) + 2510+ 25500 ® = 1 100 ar

1
= fo)(ts),6) + §hzf</;>(t(s),i)/T2k(T) dr + Ou(h3)

= f(5)(x(5),iB(s)) + Ou(h?), (53.28)
where # lies between t(s); and t(); — Ths, and O,(h?) in second-to-last

equality can be obtained in a similar way as (S3.23]). Based on Conditions
IA1.1} [S.4(74)| and [S.4(v)|, we reach that

V(B(s),nilX(s),i)

1 ) )
b {khs (X(s).iB(0) — X(Ts),j5(5>)|x(s),i}
1 . .
= n— 1E {k?‘ (x(s),iB(s) = X(Ts),jﬂ(s))\x(s),i}

1 t(s)a’i B t(s), j

= o [ # () e o
1 2

- m/k (T)f(5)((s),i — hsT) dT

= TL — 1 /k' f(S) t(S) - hsTf(/s>(t(S)’i) + hST{f(/S) (t(s),i) _ f(ls) (E)H dr
1

< = Dh. {f<s>(t(s> ,)/kQ(r) dr + hs| f(s) (ts).) /m%) dr + ou(hi)}

= Ou(hi'n™h), (S3.29)

where 7 lies between t(s)i and (s ; — Ths, the O.(h?) in the second-to-last

equality is obtained like (S3.23|). Combining with (S3.28]), (S3.29), given
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X(s),

B(s),ni - E(B(s),ni|x(s),i) + OP [{V(B(s),m|x(s),z)}l/2}

= fi9)(x(5)B(s)) + Op(h2) + Op(h;*n~1/?). (S3.30)

Further, combining with (S3.28)), ((S3.29) and based on Conditions and

, given X(4);, we have

min min B ;
1<s<Sp 1<i<n (5).m

= min min [E(B(s),ni|x(s),i) —+ {B(s),m' — E(B(S)7m|X(S)7i)}]

1<s<8, 1<i<n

; ; A A . 11/2
Z 12%%71 1%1311nE(B(5)’"1|X(8)”) 122}5,{” flglf%g}fm OuP [{V(B(s),m‘x(s),z)} }

min - min f) (X, :8()) — O ( max hz) - Op ( max h;l/zn_lﬂ)

1<s<8, 1<i<n 1<s<Sn, 1<s<S,

v

> c+op(1). (S3.31)

Now the proof of ([S3.4) and (S3.5)) is completed.
Third, we consider (S3.6)). Following (S3.20)), we have

1
n—1

Z E {k;z (X{s),iﬁ:s) - X(Ts),jﬂrs))lx(s),i} ‘
J#i

= Our(py?). (S3.32)

! —
max [E(Bo) nilX().:)ll = max

E {k;zs (X&,zﬂ?s) - X&,jﬁ&))l’%s),i}

< max max
1<j<n 1<i<n

According to the process of (S3.22)), based on Conditions [A1.1] and

Al.4) we note that

||V(BES),'IZZ|X(5)77/) ||
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| /\

Z IV (K, (.87 = x(0.3800) x4l

JFi

1 %510 — X157 70 { X(0.8() = X055
n—11%n E { h? g hs ‘X(S)’i

= Oup<hg3n71ps).

IN

(S3.33)
Thus, combining (S3.32) and (S3.33), resembling ((S3.27]), we obtain

Dnax WZ 1By milI”

2

<1§Slg)§ EZ”E Blay il x(s),0) I’ +, max JZHB(S) ni = B(B(s) nilX(s).4)
< i _ ) AR
e mex 2p BBl mabxo )"+ Z”B()m E(B{o) milx(s) 1)

Sn
=Op <1 +>° hs?’nlps) . (S3.34)
s=1

Now the proof of (S3.6)) is completed.

Fourth, we consider (S3.7)). It is readily shown that

max max E(Cg) ni|X(s)i)
1<s<S, 1<i<n
T *
— max max S BB (ki (0 81— Xl B b}
J#i
= 0.

(S3.35)

Under Conditions [2(z)} [S.1(7){and [A1.4] we can obtain its conditional vari-

ance as
V(C (s) 7nilx(s ,i)

= GoTe ZV{e]khs 1iB(s) — X(s).4 5(3))‘ (s)Z}

JFi
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ZE[{E2kh 8)7, (s) ﬁ(s }‘ }

J#z

ZE [{ki (X(Ts),ﬁ? X(s } ‘X(s z]

JF#u

1 o [ 19 ()i L),
- (n_l)QE:Uj/ﬁk ( h fio)(ts).5) dts),
J#i s s

0-12nax t(S)vi_ s),
= h2(n—1)/k2 (h—j) fioltias) dheas

0.2

“ -1 / KA(T) [f (t) = haT flo(tea) + bt { flo(t.0) — fo(D)}] dr

0_2

= -1 {ﬂs)(t(sxi) / k() A7 + £ (ts).0) s / Tk(7) dr+0u(h§)}
= [f(5)(X(5),i8(s)) Our (b 'n7h)

= Oup(h;'n™1), (S3.36)

where £ lies between t(s)s and t(s); — Thg, the last equality is from Condi-
tion and O, (h?) in the third-to-last equality is obtained similarly as
(1S3.23). Like (S3.25)), we can combine ((S3.35) and (S3.36]) to show that,

given Xy 4,

1/
\max max Coni € max max B mil(o,) + max max Ouwp [{V(Boymibio.)}/?]
= Op( max hg 1/2n71/2>.
1<s<Sy

Now the proof of (S3.7)) is completed.

Fifth, we consider (S3.8]). It is straightforward to shown that

B(C

1%

E {kh s) z (s) XF(FS),]'B?S)”X(S)”'} = 0.

(s),ni

J?él

(93.37)
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Based on Conditions [2(7)} [A1.1},|S.3(z)| and [A1.4] we see that

[V (Clay milxe),) |

< T || J FFne (5o,iBts) = X(5),580s)) Ok ((0,iBis) — X(5),581s) 'X( g

= * * ),
Jm X HX 5),% - X || t s),1 t s

Sn—al/ ROk () f(b.g) die

20 ax MAX1 <5<5, MAX1<i<n ||X(s),i||

n—1

1.7a ()i =ty
X/Ekhs (7@ fo)(s),5) dis)

20 max MAX1 <5< 5, MAX1 <i<n || X(s),i]|°

N hi(n —1)

X / [y (tesy) = BT flsy (o)) + hs{fls) (bey.6) — Flsy Y] K 2(7) dr

<z ( (Ps {f(s) Ls),i /k ) A7 + hal fs) (t(s).i |/\TV€ )dT+0(h§)}

= Oup(hs’n " 'ps), (S3.38)

where t lies between t(s); and ts); — Ths, Oy(h?) in the second-to-last

equality is obtained similarly as (S3.23). Meanwhile, based on Conditions
IA1.1} [S.4(7) and [S.4(iiz)|, we obtain that

y Oupr(ps /
E {IV(Clo)milx).0)ll} = hg(;(fl)){/f(zs)(f(s),i)dt<s>,i/k2(7)d7
+ hs /|f(s) t(s)1)|f(s)(t(s)z dt(s)z/|7-|k dT+O ( )}

= Oupr(hy’n"'py). (S3.39)

Again, like (S3.25)), we can show, based on (53.37)—(53.39), that

may @ZII il < max - ZHE Clomilx()II

+ max — Z HCS) ni s) ni|X(3)»i)||2

1<s<Sn NP
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Sn
— Op (Z hs_?’n_lps) : (S3.40)
s=1

This completes the proof of (S3.8§)).

Finally, as for (S3.9)), from Condition 2(z)|, we have that

A(s) i p iﬂ"k‘lhs XTs 276*8 _XTs '18*5
max maX ( )7 = max max ZJ?; J (T( )7 *( ) T( )7.7 *( ))
1<s<8p 1<i<n | B(g) i 1<s<S, 1<i<n Z#i k. (X(s),iﬁ(s) _ X(s),j/B(s))
Z;L;é’b khs (X’(I‘S),zﬁzks) - X’(I‘s)’]lBEks))
< max |p;| max - e i
1<i<n ' ''1<s<Sn Z#i kp, (X(s),iﬂ(s) — X(s),]ﬂ(s))
= max | = O(1).
This completes the proof. O

Lemma S.2. Under Conditions|A1.1, (A1.2, |S.3(iit), [S.4 (i) and |S.4(vi),

we have

max  max |g(s)(X(s),iB( )*71 D {96 (X{).iB(e)) + €5 hn, (x(y iB(o) — X{2).18(s)

1Ssssy tsicn WO B i~ 1) — (.3P(s)) T 1IR3 (s),if7 () T 3(),37(s)
VES

=op(1)

Proof of Lemma[S.3 Under Conditions and [S.4(vi), we ob-

serve that
X(S)ﬂ}

1 - * * *
: { Z{g(s) (XF(FS),]IB(S)) + ej}khs <XP(FS),ZB(5) - ng)vj’a(s))

n—1
_ XT ﬁ*
(), (s)
’ ) X(s),z}

i
hs
1 Ls)i = ts),d
= / 9is) (t(s).5)k <h—J fo)(t9).5) dt(s) 4

* 1 X(TS),Z"B?S)
=E {9<s> (X(0)3870)3, F (

s
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= /g(s)(( i~ Thy)k (T)f(s)(t(s),i_Ths) dr

- / (D0 (tey ) — Thetls) (b ) + Thal @l (beys) — Bl (D)}] K(T) dr

= 9(s) (X?s),zﬁ?s))f(s) (X?s),iﬂ?s)) + Ou(hg)v (8341>
where { lies between (5 ; and t(5) ; — Ths, and O, (h?) in the last quality is

obtained similarly as (S3.23]). On the other hand, we have

X(S)vi]

[ Z{g(s s) j + ej}khs( (s), 118>(ks) - Xr(rs),]ﬂ?s))
J#Z

1 * *
= gV {0 (5.800) e (8T — x00.0870) 0.
2 2 * *
S — [{9<5 (X(5),38() + 75 i, (%(6),B(5) = X().8s)) XW}
)i = Ls)g
— =y ol + a2 (M) o e

1 2
gm/ (ot — ThR? (7) dT

o [ oo~ hR (7) dr

n—l

:—hs(n—l) [0 (t()0) = Thstpl) (t5)4) + Tha{ () (ts).5) — Pl (B} K*(7) dr

0.2

R / [ (b)) = Thsfloy (be.3) + Th{ floy (be5) — Fl (D} K*(7) dr

_ m {%)(t(s),i) / k2 (7) dT+Ou(h§)}

2

* % {f(s) (t(s).1) / K2(7)dr + Ou(hg)}
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= {g{) (X(5)i8(s)) f(5)(X(5).:8(s)) + O} Our (hy'n ™) + Oyu(han™1),
(93.42)

where ¢ lies between t(s),; and t(s ; — Thg, and O, (h?) in the second-to-last

equality is calculated in the same manner as (S3.23)). Now, from Lemma

and combining (S3.41]) and (S3.42)), we obtain

max max
1<s<Sy 1<i<n

1 *
9 (X(9),iB9) — 57— Zg(s> X(5),i8())kns (X(),i8(s) — X(5).58(s))
B(s),ni(n —1) ]751

96y (KT B ) i) (X0 1BEe)) + Our(h2) + Oup (h/*n=1/2)
f(S)( (s), ﬁ(g))JrOp(hQ)JrOP( —1/2 n—1/2)

=0p (1 max hg) +Op( max hg 1/2n71/2)

<s<Sn 1<s<Sp

= max max
1<s<S, 1<i<n

g(S) (x(s) 1/8(3))

= op(1), (S3.43)

where the last second equality is due to Condition [S.4(:7) and the last

equality is from Condition

O
Lemma S.3. If Conditions [1-[{] and hold, then
n aH(S)yn(IBZS))
max |\, / So. 0B, = Op(1). (S3.44)

Proof of Lemma[S.3. We first note that
n aH(S),n(IB?s))
Snps 8/6(5)
2 ~ .y 99004 X(s), iBs)
= lgg?gn W Z {yz - g(S),i(B(s))} 05(3)

T, Wz{% P (Z’“‘J a3 )>||

JF JF

max
1<s<Sn
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n

2
< 1£nsz<1}§n —(TLS » )1/2 ;QZ( )l T 12%}5{‘,1 nS ) 1/2 ;;Ezﬁjm(s ij
2
TR S Z {1 = G4 (x0.B1) } 20,
2
TR S Z s = B0 @f o
j#i
= Hl -+ H2 + H3 + H4, <8345>
where
a khs,z TS 1/6 B s
mys),ij = n J( 2 o ) ) (53.46)
(’9 S) ijﬁi khs,zj( /3(5 - /6(8))
A s),ni A s),ni s),ni
T = Z“J _ A _ A B, . (S3.47)

B ] B s),ni B s),ni
oy (i Blo)ni B,

Next, we will examine each term in (S3.45)). First, we calculate the volume

X;, 1 = 1,...,n.)
X;, 1 :1,...,n.>

Xt =1,..,m

of ITy. For § > 0, when n is large enough,

n /

Z E‘A(s),m'
‘B
=1

(s),ne

>0

1
Pr (m |
I

S <nTlsle? Zp*lE

>0

s) ni
"By

2

2
s) ni

<6 2p7! max E 0
1<s<S,

o2 T lmaxic.<s, Zz 1yt H )ni

2
02 min; <5<g, Minj<;<y, B(S)

8

I

N

Oaa{OP(1) + Op(323" h*n'p,)}
B 0*{c+op(1)}?
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= 0p(672) = 0as § — oo, (S3.48)

where the second-to-last equality is based on Lemma [S.I] According to

X;, 1 = 1, ,n) =0,

(S3.49)

van de Geer| (2000), (S3.48) further implies that

n !/

>

i—1 (s),nt

—1/2 >4

—00  p—300 1<s<Sn

lim lim sup Pr ( max (nS,ps)

in probability. Furthermore, according to Dominated Convergence Theorem

> 6)
Xi,’i = 1, ,n) }

=0, (S3.50)

and Theorem 6.5.6 of (Ash| 1972)), we have

n /

Z €; 2(8),77,1'

i—1 (s),ni

1/2

lim lim sup Pr ( max (nS,ps)”

=00 p—oo 1<s<Sy

n /

Z €; 2(8) ni

i=1 (8),ni

>0

<E { lim limsup Pr ((nSnps)_1/2

6—=00 nooo

which indicates

n

1/2 _
1I<11£<1>§n(n5nps) = Op(1). (S3.51)

i=1

From LemmaS.1], we also have

n 2

1 A s),nt B/s ng
max Z (s), (s),
1<s<8n Nps “—

B(s) g B(s) ng

9 2

max E
1580 NP “=

maxi<s<s, 1" Z, 1psl|| (s),ni

ming <s<s, mlnlfzgn B(s),m

As)ni
B(s) ni

< max max
1<s<Sy 1<i<n

STLZ

I

= 0(1)



S3. LEMMAS AND PROOFS

Op(1) +Op (252, h*n'p,)
<
N c+op(1)

= Op(1).
So in the similar manner as (S3.51)),

zn: A(s ),ni B(s) ni
B(s) ni B(s) ni

=1

1/2 _ Op(l)

max (nSyps)”

Putting (S3.51)) and (S3.53) together, we obtain

n

(TLSnpS>_1/2 Z €iZ(s),i

=1
_ 1/2 (s),ni . s) ni s
%5, (n5epe) Z ( oo BB )H

1/2

max
1<s<S,

< max (nS,p,) "2 Z

 max + max (nS,ps)”

1<s<S,

— 0p(1).

n

>

=1

(S3.52)

(S3.53)

/
A(s) N B(s) ,ni

B(s) NG B(s) NG

(S3.54)

We then consider II;. Making use of Lemma [S.1] and Condition [AT.2]

it is shown that

s) ni

maX1gs§Sn n_lps_l Z?:l HC,s),ni

I

max

1<s<Sn NPy z;

s) ni

OP(Z " h3nTp,)
e + op(1)

Sn
= Op (Z h;3n‘1ps)
s=1

= OP(1)7

. . 2
ming <s<s, MiNj<;<n B(s)

N

(S3.55)
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and

2
1 C s),nt s),ni
max e ( ( )

1580 <= s || Bs)ni Bs)ni

n

maxi<s<s, Maxi<i<n C(S) ni MAX1<s<s, 0 ps ' Zl 1 || (s), m”

min, <,<s, Miti<i<p By,

Op (maxlgsggn h;lnfl) {Op(l) + OP(an hy 37171]95)}
ct+op(1)

IN

—0p(1). (S3.56)

Then resembling (S3.51)) and based on (S3.55)) and (S3.56)), we also have

n C/ )
1/2 ()i || _
max. (nSpps)~ E_l € B Op (1), (S3.57)
n C B ‘
1/2 s)mi ()i ||
122>§n(n5np5) ;:1 € B By Op(1). (S3.58)

Put (S3.57) and ([S3.58) together,
Z Z%m(s) ij

max
1<s<Sp nSnpS ==

~ o Clay mi Ble) mi
— 1/2 (s),ni  Y(s),ni Z(s),ni
= 1£2§n ’)’LSnps Z €5 < S) . B(S) . B<5) ni) H
Clsy mi " C ,
< W Ds -1/2 i (s),mi o —1/2 Y (s),ni s) ni
< s, (o™ e g ey (nspe) |3 e o
=0p(1). (S3.59)

We now consider IT;. Based on Lemma and Conditions [3] — [ by

Cauchy’s Inequation,

2

Al ni Alsy i Blsy i
3 (s),n4 (s),ni 2(s),ni
n—1 Z kh X( ), "ﬂ(s) X<5> J (s)) <32 2

1
max
1<s<Sp NPs g Py (s),ni B(s),ni B(S),M
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— max —- E": 2":khs(X(Tswf’@—X<Ts>,jr3fs)) <A2s>,m' _ A)yni B(sw) 2
1Ss<Sn nps || (n —1)Bs)ni Bsyni  B(s),ni B(s),ni
2

z gww > | gt e g

T . . . 2
<, DBl [ 30 e e pe
=Or | n,ma, mZ K (Blo)
— 0p(1), (S3.60)

Where K 'L] (ﬁ(s ) - khs( (s) Z/B* (s ﬁ(s )/ Z];ﬁl khs( s) 7,/6 s) ]ﬁ(s )
and the penultimate equality is due to the following equalities ((S3.61]) and
(153.62)):

n 2

1?31%).;1 11}13a<xn ZT Z K(S) ij /8(5)) Z

/
(s),ni

B( ),ni

[

2 I1[1?-1X1<s<sn Sy P A i
Z (s), ZJ

2
minj<s<g, Mini<i<n B(s),m

Op(1) + Op(325" hyn'p,)
c2+op(1)

< max max
1<s<S, 1<5<n 4

<n max max ZK<S) ij :3(5))

1<s<5, 1<j<n 4

=Op | n max max ZK(5> i (B(s)) (S3.61)

1<s<S5, 1<j<n 4

and

2
As),ni Bloyni

B(s),ni B(s),ni

max max — E K()U E
1<s<Sp 1<j<n Ps —

Ay ni |? 112

Bs)ni

maxi<s<s, Yoy Ps | Blsyn

mini<s<sg, Mini<i<n B?

IA

max max E K? max max
1<5<Sy 1555 4 (s)%9 /3(9)) 1<s<Sp 1<i<n

(s);mi

Op(1) + Op(X5m, RT3 ps)
Z+or(D

n max max ZK(S )i ﬁ(s) o(1)

1<s5<S5, 1<5<n 4

=0p [ n max max ZK(SW Bia) | - (S3.62)

1<s<8, 1<j<n 4
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Then resembling ([S3.60) and by Chebyshev’s Inequation, we know

1 1 S . S T * T * A/.s) ni A(s),ni BZs),ni o
(S3.63)
Further, from Condition [S.3(v)} we know
2 B A(s)mi
1212)571 VnSpps ; ('ui N B(s)’m-) B(s)
2 = A s),nt a A (s)
= max —— Z i — (s),
1Ss<5n /NSKPs || 4= Bsyni) 0B B(S )i
a n n 2
— 1/2 _ g .
- 1I<T;E<D§n(n8nps) 6,6(5) Z Hi Z K(s),z] (/3 s)):u]
i=1 jF#i
= Op(1). (S3.64)

Therefore, combining with (53.63) and ([S3.64]), we have

i — §<s),¢(X(Ts),iﬁ?S))} Z(s),i

Cls)ni
el KO

Bs),ni

Z(s),i

A,

2 s 3]
- e IO~
= Or() + max (nS.p.) """ Z B<3 -
=Op(1) + max (nSups)”"/* gi;:
=0p(1)+ lg%%)én(nsnps)_l/z

X i - i 7 i €ikn, (X(Ts),zﬂ?s) - XES),jﬁsz

i=1 J#i

=0p(1)+ 1%2%%”(”5"%)71/2

x| = i € i K, (X(s),iB(s) —

=1 i

T * A
.80 B2

(S),ni
B(s) ni

/
(A s),ni
2

B( ),ni

s BES),ni
Bs),ni B(s),ni

!
A(s),ni B(s),ni
B(25),ni B(s),ni

/
(s),ni

/
A(s),ni B(s),ni
B(Qs),ni B(S)y’ﬂi

(s),ni
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= 0p(1). (S3.65)

Finally, we deal with II;. According to Lemma and Conditions
and [S.3(411),, we have

max max

~ T *
12525, 1<iom i g(s),z(x(s),ilg(s))

= max max
1<s<S, 1<i<n

14 = 9(5),i(X(5),iB(s)) + 9016 (X().iB(s)) — :g\(S),i(XEFs),iﬁZs))‘

3 iz Vikng ({5 iB(s) = X(5),,8(5)
Goi Fns (X0 iBls) = X() ;B(s)

_ T 3* _
= g e oo Ol i)

+ max max
1<s< Sy, 1<i<n

1 = g(s) (X().iB(s))
Z;l#z{g(s) (x’(rs)ﬂﬁz‘s)) + €j }khs (XV(I‘G),zIBZs) - X’(Ijs),jﬁ?s))
2 R (X0 iB(s) = X5 ;8()

Z;l;éz{/'lﬂ - g(s)(xg‘s)dﬂ?s))}khs (X?s),zﬁ?s) - XZ),JIBZS))
n * *
2 Fns (X0 iBls) = X(5) ;805)

< (4805 —
< max  max 1ges)(X(s).i8()

+ max max
1<s<S, 1<i<n

+ max max
1<s<S, 1<i<n

Hi = G(s) (XES),iIBZs))‘

Z;L;éz{g(S) (X’(I‘s),zﬂz{e)) +¢€ }khs (X’(I:?),'LIBZQ) - x’(rs),]ﬁzks))
2 5 ks (%05),iB0s) — %) ;80s)

< max max
1<s<S, 1<i<n

g(s) (x’(rs),iﬁz(s)) -

+ 2 max max
1<s<S, 1<i<n

i — g(s)(X(Ts),iﬂzs))’

=op(l)+2 max max
1<s<Sy, 1<i<n

pi — 9(s>(X<Ts),i,3Ts))’

= 0p(1). (S3.66)

Resembling (S3.27)), we can obtain

n

n ‘Sn
1 1 ’ * * -3, -
o5 Do\ g Dok k(B — x(0.4B) | = O (1+§ hsn 1ps>- (53.67)

1<s<S, N
S855n MPs j=1 i#] s=1
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Then combining with (S3.66)), (S3.67) and Lemma [S.1] we obtain that

2
1 i 1 i 8k:hs( ﬁ(s — s)jﬂ( ) {Nz - g(s),z'(X(Tsmﬁ(s))}
nPs st n—1 oy 35(5) Bs)ni
2

maxi<s<s, MaXi<i<n |Mi — /g\(s),i(X(TS),i/B?s))
<
- min; <<, Mini<i<, B,

1 « R .
I T <n 7 2 i Ol = X0 >>>
J=1 i#]
OP<1) 9] 1 _I_Sznh—?) -1

= ———— n s

A +op(1) " —~ " b
= 0p(1), (S3.68)

where the second-to-last equality is due to Conditions|2(7)|and [S.3(z:7), and

the last equality is due to [A1.2] So based on (S3.68)), resembling (S3.51]),

we obtain that

o~ * s),nt
{:U'i g(S),i(x s ,iﬁ )
Z (), (s) Bs)ni

=1

Okn, (X(5),iB(s) — X(5),58(5) { ST 1
i = )i (X(wy 187 }—
n—1 Z g aﬁ(g) I (s) 1( (s),iM( )) B(s),m

j=1

—1/2

13«32%"(”3"1)3)

—1/2

= max (nSpps)
1<s<S,

= 0p(1). (S3.69)

On the other hand, based on Lemma [S.I] and Condition [3 by Cauchy’s

inequality, we have

1 1 - T * T * ~ T * ’
Jmax > o g b (<L B0y = X{0.5800) {10 = 00 a(xE 87, } B
i#]

j=1
/ 2
B(s),ni }

B(s)ni

1 nksszi*sisz'*s
e {Z he (X(5),iB(s) ~ *¥(5).4P(s))

2
< R~ X T  g*
< max | = §s),i(X(2).i8() 1<5<Sn NPs Bs),ni

1<i<n

i=1
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2
2 B/
< i — sy (X(s).iB] ‘ K? ()i
< ax |pi = gia).i(X().iB(s))| | max nps{lgljagnz (5.1 (B(s)) Z} Biomi
2
2 "1 B! .
< i — G().i (X0 B( Z(s)ni
< i s = 9ot B0)| (| mag fgaznZme i) | \max 2o B
£ :
2 Sy o 1B il
o~ ) T % i=1 s (s),ni
< o [ =GOt 80| | oy &afnifw ) | Spitn oz, mimzcn B2,

,ni

Op (1 + 35 b, 3n*1ps)
c2+op(1)

=O0p(1) | max max ZK(S) (B(s))

1<s<Sy, 1<j<n 4
— 0p(1). (S3.70)
Based on (S3.70]), resembling (S3.51)), we also have

n !
_ e\ Cloymi Bioy,ni
Z {,Ui — G(s),i(%(5).iB(s)) Bis) i

—1/2
153?5"(”5"%)

= B(s)ni B(s),ni

“ 1 = * * ~ * B/s ni
= max (nSyps) '/ Z — Z kn. (X(s),iB(s) — X(5).58(s)) {m — G().i(X(),iB(s)) B(Q)

1<s<Sp, .
i£] (s),ni

= 0p(1), (S3.71)

where the last equality is due to Condition [AT.2]

Putting ((S3.69)) and (S3.71)) together, we obtain

n n
max max 2(nSpps)” 1/2 Z {,U«i - ?]\(s),i(X(Ts),iﬁzs))} Z €5 M (s),i5

1<s<S, 1<i<n <
i=1 j#i

1/2
= max max 2(nSnps)” "
1<s<S, 1<i<n

B(s)ni B(s),ni Bs)ni

U !
C(s),ni _ C(s),ni B(s),nz)

P /g\(s),i(xg‘s),iﬂ?s))} (

1<s<S, 1<i<n B(s) ni

o
< max max 2(nS,ps)”"/* ‘Z{“ = G2 (x(5),iBs >)} B

/
C(s) ni B(s),ni

+ max max 2(nSyps) —1/2 {,uifg(s),,‘(sz B 53—
; P By mi Blaymi

1<s<Sy 1<i<n

=0p(1). ($3.72)

Finally, combining (S3.45)) with (S3.54)), (53.59)), (S3.65) and (S3.72)), the

proof of (S3.44) is completed.
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]
S3.3 Proof of Lemma [1]
Proof of Lemma[1. From Lemma [S.3] we have
n aH(S),n(ﬁ?s))
max |y / S 0By, = Op(1). (S3.73)
Also, noting that B(S) = argming | H(s)(B(,)), we have
From Condition [S.5(7)], we obtain
> _ *
0 12% {Hs)n (ﬁ( )) H(s),n(ﬁ(s))}
OH (5)n(0B(5)
— — T’—S
1~ * a HS) (’3(5) * 3 *
+ (B — Bis)" —(5(5) —B(s) +orlIB) — 5(5)”2)}-
2 B985
Multiplying both sides by np;1S,1(1 + max;<,<s, nl/ngl/ZSgl/QHB(s) —
Biyll) 72, we have
T, n 8H(s),n(18(‘5
0= ISHSI%}én {c ('B(S)) \ Snps 8ﬂ(s) { 1<s<sn \/ nDs H'B( )T ’8(5 }
1 o~ (PHen(B()
+§C (Bs 98,08, (/3(9))
5 —2
+0P{Sn HB@) B(s) <1 + ax (o Snps ,3(5 =B ) }]
> [ n aH(S),n(IB(s))
2 - 122)511 Hc(ﬁ(s))“ 122}571 Snps 86(5)
x {1+ x| By~ B } +{5 +or} max @I, ($374)
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where the last inequality is due to and

-1
cn(IB(s)) = (1 + max n1/2p;1/2551/2“5(5) - B?s)l‘) nl/2p;1/23;1/2 (B(s) - B?s)) .

1<s<Sn

(S3.75)

Finally, combining with (S3.73), if max;<,<g, nl/zps_l/QS;l/Z||B(S)—BE‘S) | —
00, then inequality implies max;<s<s, HC(,/B\(S))H = op(1). However,
from max;<,<g, HC(B(S)) | = op(1) and (S3.75), we can obtain max; <s<g, n'/?
ps—1/2S;1/2HB(S) — Byl = 0. This leads to a contradiction, and therefore

we can conclude that

max ”1/219;1/257:1/2”@5) — Byl =0p(1).

1<s<S,
Similarly, we can show (3.8) by contradiction in a similar way. ]

S3.4 Proof of Theorem 1

To prove Theorem [I], we first introduce some lemmas.

Lemma S.4. Denote

Bi(5)(B(s))

B S (/3*5 )
B (8, = O

Bn(S) (/6?5))
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and
D (B(5)
D2</8>(k5))
D(ﬁ?s)) = )
where
Bi(s)(B() = 2= k. (X9 B = X(,5-500) i=1.....n
T Xrean ks (X(0 B — X() +Bs)
and
. kng (X(5),mBls) = X(5),58() :
D = =(U=1DM,+1,...,I1M,.
1(B(s) { et bng (X3 Be — X 5+ B2) MnXMny m,j=(—-1)M,+1

Then we have that

K(5(8(5) = B»)(8(5)) {K(»)(B(s)) = D5)(B(y) } -

Lemma can be obtained with some algebra, and we omit the proof

here.

Lemma S.5. Under Conditions @ and we have that (i)maxi<s<g,
Amax{K(5)(B())} = Op(1). (ii)maxi<s<s, Amax{Ds)(B(s))} = Op(Mndy).
(ZZZ) maxi<s<s, )\maX{B(s)(ﬁ?s))} =1+ OP(Mndn> (ZU) maxi<s<gs,

Amax{B(s)(B(s)) — In} = Op(Myd,,).

Proof of Lemma[S.5. First, we prove Lemma ( i). Using Reisz inequality
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(see. e.g.,[Hardy et al] (1952); [Speckman| (1988))) and Condition [4 we have

max Amax {1 K (s (H(ks))}

1<s<S
1/2
< s {31000 s 3 01
= Op(1). (S3.76)

Second, we prove Lemma [S.|(%). From Condition [ we have that

max Amax{D(s)(8(s))}

1<s<S,

1/2
< max ¢ max E Dy ﬁ max E Dy
1<s<S, | 1<i<n [Disy 5 (B ’1<]<n | Dsy.i5(

1/2

= max { max Z | K ()i (B(s)| max Z | K ()45 (B(s)]

1<s<Sy, 1<i<n 1<5<n
JeB(i) i€B(5)

1/2
< max {M max max |[) ”(st))| M,, max max |K ”(ﬁfs))|}

1<s<Sn, 1<i<n 1<j<n 1<i<n 1<j<n

= M, max max max K ;(8(;))

1<s<Sp 1<i<n 1<j<n

= OP(Mndn)7
Next, Lemma [S.5|(iii) can be obtained from Condition [3] as

1£nax Amax{Bs) (8 ))}
Z;L* 1 k (XTS) 1,62(3 (5) /6? ))

= max max
T 1<s<S, 1<z<nz A khs(sz zIB"‘S = Xy Bs))

Zj*el”j'(z s(Xs 13(5 - s)] /6>(k )) -
2 =1 ki (x5 By = X( 5-B()

1<s<S, 1<i<n

= max max {1 —
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-1
k X ( - XT Sk *S
<<{1—- max max Z] "EB( h (s), iBs) (5), B ))

1<s<Sy, 1<i<n Z =1 khs( X(s ),z’/g(ks) o X(TS)J*B?S))
ki, (X(5) iB(s) = X(5),,8()

<<{1-— M, max max max
= 1<5<}§n 1<i<n 1<j<n Z fey Feny (X, X(y). Zﬁ’(“ X(TS)J*H("S))
=14+ 0p(M,d,). (S3.77)

Finally, we can show Lemma [S.5|(iv). Using Condition [3| we observe that

max Amax{B(s)(8(s) — In}

1<s<S,
n T T *
e e =k OB =X 5+ Bi)
1S5S0 1SiEn 3 e i) khg (X0, 8(s) — X () 5+B(s))
T * T *
o e 2238 Fre (56 Bl ~ X(9,450Bls)
1S5S0 15950 D7 e 4y K (x04).:Bls) = X2y 5+B(s)

D jeen() Fna ({5 iB(s) = X(5),5+B(s)) Z?*:lk - (X(6),iB(s) = X(9),5+B(5)
n * *
Zj*=1"’hs( (90.B(s) = X{5)3+Ple)  Ljreaw ks (X{,) Bloy — X4 ;+Bls)

T * T *
x| 22ameB6 P (.80 — X(0).5-Bls)
1Ss<Sp1isn | 300 kg (X 800 — X j+B(s)

T * T * -1
1 2 (i) R (%(5),iB(s) = X(5)5+Bs))
25 =1 g (X 3BTy = X(o) 4+ Bs)

-1

max max
1<s<Sp 1<i<n

IN

k‘hs ng ﬁ* —XT *ﬁ*
max max max | M, —z ( (‘)”T (s) _ (S)JT (s))*
1Ss<Sn Asisna<ySn |0 SRy ki (X iB(0) = X{o 5+ B(s)

-1
kn (xF .Bry — X1 3%
1—- M, max max max e “Mﬂ(s) = (2)4 ﬂ(s))*
1<s<S, 1<7,<n1<]<n2 khs(x(Ts)yi,B@)—X(Tsm*,@(s)))

= OP(Mndn)Op(l + Mndn) = Op(Mndn).

]

Proof of Theorem [l For the exposition purpose, we assume non-random
{x;} in this proof by conditioning on {x;}. We can extend the arguments
to random {x;} in a straightforward manner; See, for example, |Zhu et al.

(2019). Define € = (€1, ..., €,)", then we can write CV (W) as

CVy, (w)
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= ||fa(w) — y|*

= [ {A(w) — p} + {B(w) — 2" (W)} — {f(w) — p" (w)} — {p" (w) — 5" (w)} —€||®

~ ~ % 2

= |la(w) — pl* +llel® + lB(w) — " (W) + [B(w) — 5" (w)[* + || (w) — 5" (w)]
~—_——
Ly (w) ) ) )

+2{f(w) — " (W)} e+ 2{A(w) — " (w)} e+ 2{p"(w) — [i" (W)} "€
@ ® ©®

+2{fi(w) — p} e+ 2{i(w) — p} {fa(w) — " (W)} + 2{a(w) — p} " {l(w) — " (w)}
@ ® ®

+2{l(w) — p} {p" (w) — " (w)} +2{(w) — " (W)} {(w) — p" (W)}
© O

+2{B(w) — 5" (W)} {p" (W) — " (W)} + 2{i(w) — p" (W)} {p" (W) — 2" (w)}
e &)

= Ln(w) + ||€]* + Ern(w), (S3.78)

where =;,(w) collects the terms (D-{3. We can also write L, (w) as

Ln(w) = || (W) — pl*

~ * 2

=|p"(w) — p+ p(w) — p*(w)]|

= " (w) = pll? + la(w) = p" (W)I* +2{p" (w) — p}"{fi(w) — p" (W)}
Ly(w) D o

= Ly (w) + Zon(w), (S3.79)

where Zy, (W) collects the terms () and 3. Similar to the proof of Theorem

17 in Wan et al.| (2010)) (see also Li (1987) and |Gao et al.| (2019)), Theorem
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1 holds if we can prove the following two equalities:

sup |Z1,(w)|/L}(w) = op(1l), and sup |Za,(W)|/L} (W) = op(1).
weWw wew
(S3.80)

To show (S3.80)), we need to examine each term in =, and =,,. We first

prove the following equations regarding (D—(6) and related terms:

sup [Jp(w) — w(W)I*/ Ly (w) = op(1), (S3.81)
sup [|p(w) = e (w)I*/ Ly (w) = op(1), (S3.82)
sup [|lp(w) = s (w)I*/ Ly (w) = op(1), (53.83)
sup [{p(w) = pi(w)} el /Lo (w) = op(1), (53.84)
sup [{p(w) - p(w)}el/ Ly (w) = op(1), (53.85)
sup [{p(w) - w(w)}'el/Ly(w) = op(1). (53.86)

We start with proving (S3.81). Based on Lemma , we observe that

sup [|A(w) — p*(w)]”

wew
2
= sup ws Ky w,K
sup Z © Z
—~ 2
< _ *
< max | K (B)y — K (By)y

n

~

2
= max {g(s)( X(s), ,5( )) — 9(s) (X(Ts),iBFS))}

1<s<Sy ©
=1
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n ~ =)\ g~ ~(@)
m @ e )T 99(s) (X(Ts),zﬂ(s)) 99(s) (X(Ts),iﬁ(S)) (B ey )
= 1§32}§n - (s) (s) aﬁ(s) aﬁifs) (s) (s)

1 = 9Gs) (X, 158) 99(s) (x5 iBEi))) -~ 2
< - s s _a*
S Y Amac ) 2 9B, B¢, 15285, Hﬁ © =B
~ R
= OP(pmax)n 12%}5(,” HIB(S) - ﬁ(s)
nols . 2 2

= Op(Pmax) SnPmax 12;2}5” S Hﬁ(s) — B = Op(SnPiax)s (53.87)

where ,EEZS)) lies between B(S) and () and thus also in the neighborhood
O(B(s), p) for some constant p according to (3.7), when n is sufficiently
large. The third-to-last equality is due to in Condition . Moreover,
we note that

Sl S8 *PrnasSn *Pinas
&n né&,
S0 nPmax 5% Prnax
= &u(n — My)Y2 (n — M,)4/2
fn(n - Mn)1/2 §n(n - Mn>1/2 n

= op(1), (S3.88)

where the last equality is from Condition [6(z)|and the fact that &, = Op(n).

Combining with (S3.87)) and (S3.88)), we obtain (S3.81]).

The similar arguments can be used to prove

sup [Be(w) = 5" (W) = Op { Sunphc(n — M)~} (S3.89)
we

and also note that S,np?, /{&(n — M,)} = op(1) for the similar reasons

as ([S3.88)). Then we can prove ([S3.82)).
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In order to prove (S3.83). We note that for 6 > 0, we have

T n 2
Pr(||e]|? > nd) < E(eée) - Zié"i =0 =0 as & — oo, (53.90)
n n

where the last equality is from Condition This implies that ||€]|* =
Op(n). Further, it can be shown that

~% 2

Sup [l (w) — " (W)

= Sup HK W, ﬁ(s))y K(W ﬁ(s) YH
wew

< 2By — K (B8]
< max HK(.S)(ﬂ(s))y K(s)(ﬂ(s))yH

2
< max HK(@(%))_B(s>(f3fs>){K<s>(ﬁ?s))—D<s>(f32‘s>)}H llylI?

max
1<9<Sn

2
{10 = B (81) } K (B1,) + By (8))D 87| Iyl

< max {III = B (B 1K) (Bl + 1By (B [[D s>(ﬁ(s))|\} (el + llell)

= [0p(Mynd,)Op(1) + {1 4+ Op(Mydn)}YOp(M,d,)])? Op(n) = Op(Mind?), (S3.91)

where the third step holds due to Lemma(S.4] and the second-to-last equal-

ity is obtained from Lemma and Condition . By combining (S3.91|)
and Condition , we can obtain (|S3.83)).

For ([S3.84)), using (S3.87)) and (S3.90)), we can show that
sup [{p(w) — p*(w)} €l /Ly, (w)
wew
<& sup [ (w) — p(w)][|€]]

= Op(&," S pmaxn'?) = 0p(1), (93.92)

where the last equality holds due to Condition Thus, (S3.84) holds.
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Finally, using (S3.89)), (S3.90) and Conditions and we have

sup [{A(w) — 7 (w)} el /L (w)

<& sup [la(w) — @t (w)llllell
wew

= 6,10p {SY 20" 2P (n — M) 77} Op(n/?) = 0p(1),  (S3.93)
and

sup [{B"(w) — (W)} el /Ly (w) < & sup [|5"(w) — p*(w)l]|e]| = op(1).
wew wew

(S3.94)

In the following, we treat the remaining terms (D-{3 in =;,(w) and

Eon(w). Using (S3.81)—(S3.84) and Condition[6] we can obtain the following

results:

For term (7),

sup {p(w) — p}e|/ Ly, (w)
wew

< sup [{p(w) — p*(w)} €ll/Ly(w) + sup [{p" (W) — p} €|l /Ly (w) = op(1).
weWw weWw
(S3.95)

For term (),
Sup Hi(w) — p} {p(w) — " (w)} /Ly (w)
< sup [|fa(w) — pll/L5 2 (w) sup ||[a(w) — 5 (w)|l/L5 " (w)
wew weW

< sup {[|fE(w) — " (W) + " (w) = |}/ L5 2 (w) % sup [|fa(w) — " (w)[| /L3 (w)
wew wew
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= {0p(&, 5 * prmax) + 1}op(1) = op(1). (S3.96)

Similarly, for terms (9) and (D, it can be readily shown that
sup [{R(w) = pdH{i(w) = (W) H/ Lo (w) = op(1) (53.97)

and

sup [{p(w) = ptH{p(w) = w (W) /Ly (w) = op(1). (53.98)

For term (@), it is clear that

sup [{(w) = p (W)} H{(w) — p(w)}/ Ly (w)

< sup [[a(w) = () |/ ;2 (w) ¢ sup [[a(w) = pu () |/ L; ()

wEe

= op(1). (S3.99)
Similarly, for terms (3, (3 and {3, we can show, respectively, that

sup [{(w) = (W)} (w) = pE(w)}H/ Ly (w) = op(1), - (83.100)

sup [{R(w) = p (W)} {p (w) = po(w)h /Ly (w) = op(1),  (S3.101)

sup [{p(w) = " () — (W)} Li(w) = 0p(1). (53,102

Then, the first equality in (S3.80)) follows from ([S3.81)—(S3.86|) and (S3.95))—

(S3.101)). Combining (53.79), (S3.81)) and (S3.102)), we obtain the second

equality in (S3.80f). This completes the proof of Theorem O
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S3.5 Proof of Theorem [2|

Proof of Theorem[4. We first calculate the value of our criterion CV , (w)

at the special weight
w’ = (w], ..., wd,0,..,0)" € W.
It is clear that

CVJn<WO)
= |R(w") — |
= [R(w") — " (w") + " (W°) — p — €

= [R(w") — 2" (W)I* + |2 (W) — pl” + llel|* + 2{@a(w") — B (w")} e

+2{" (w") — p} e + 2{R(w") — 5" (W)} {B"(W°) — p}.  (S3.103)

We treat each term in (S3.103) below. From (S3.89)), we observe that

2

So
(W) = B (WP = |Dw (B — 1)
s=1

< sup  p(w) - pf(w)lf?
weW\Wg

< sup (W) — 2" (W) = Op { Sunpfac(n — M) 7'}
weE

(S3.104)
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Recall that [|pf,) — pll = Op(nhg + ') when the s™ candidate model is

correct. Then from (S3.91f), we have that

2
1727 (W) — pf|* =

So
s=1

< 252% 17" (w) = (W)IP + 2 max iy — |

= Op(M?2nd?) + Op { max (nhi -+ h; )}

1<s<S5y

= Op(M?*nd?), (S3.105)

where the last equality is due to Condition |[S.2(4iz). Thus, from (S3.90)),
(S3.104)) and (S3.105]), we obtain

{A(w?) — B (w°)} e < [[B(w’) — B (w°)[l]l€]
= Op {SY*n'prax(n — M,)"'/*} Op(n'/?)
= Op { Sy * npmax(n — M) 72} (S3.106)
{"(w") — pu}el < |5 (W) — pllllell = Op(Mund,),  (S3.107)
{i(w?) — " (W)} (w”) — i
< [la(w?) = B (wO) [[ll2" (W) — p

= Op { S Pmax Mund,, (n — M,)"*?} . (S3.108)
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Combining (S3.103)—(S3.108)) and considering that M,,d,, = o(1) and S%/meax(n—

M,)~"/% = o(1) implied by Condition 7| we can show

CV,, (W% — ||€||* = Op {Si/anmax(n — Mn)’lﬂ} + Op(M,nd,,).
(S3.109)
We now calculate the value of our criterion CV, (w) at the weight

estimator w. It is obvious that

CV,, (W)
= (W) — (%) + (W) — (W) + (%) — o — e
= (S — )+ () — i )2+ () — pal]> + e
T 2{R(W) — (W)} e+ 2{ (W) — (%)) e + 2" (W) — ) "e
T 2(W) — B (@)Y (W) — (W)} + (W) — (%)) (%) — )
2 (W) — (@)} { (W) — ). (83.110)
In the following, we consider each term of (S3.110). From (S3.89) and

(53.91),

[B(w) — B (W) < sup [B(w) — 1" (w)||* = Op { Sunphac(n — M) '}
(S3.111)

and

|57 (W) — " (W)|I* < sup |2"(w) — p*(W)||* = Op(Mgndy,).  (S3.112)
wEe
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Combining (S3.90), (S3.111) and (S3.112)), we obtain

{r(w) — p' (W)} el < [lp(w) — " (W)]|lle]l
= Op {S;/2(n — My)) 02 pra } Op(n'/?)
= Op {S%(n — M) *npua } » (S3.113)
{' (W) — (W)} el < ||p" (W) — p'(W)]lle]] = Op(Mynnd,),  (S3.114)
{a(w) — " (W)} {p'(w) — p* (W)}
< lp(w) =" (W)l[[[e" (W) — ' (w)]|
= Op { Sy 2dy Mynpax(n — M,,) "' /?} . (S3.115)
{a(w) — " (W)} {p' (W) — p}| < la(w) — g (W)[llp"(W) — p
= Op{S)/*n"*pinax(n — M) 2L (W)},
(S3.116)
{r" (W) — (W)} (W) = p}| < [|57(W) = " (W)l][" (W) — pl]

= Op{M,n"?d,L:"*(W)}, (S3.117)

and

{p' (W) — p}e < (W)€ + 1€l

< *T T, _ 1/2,1/2
< 1g2§n|u ()€l T |n" €l = Op(S,/*n"/7). (S3.118)



S3. LEMMAS AND PROOFS

Considering the index of correct model is s = 1, ..., Sy, then we have
2

Li(W) = [|p (W) — pl|* = Zwsu@
So Sn 2
=D @iy + Y Gl —
s=1 s=Sp+1
SO @ Sn /&7 2
= i s o 1 i S *
wa Z DA (k(sy — ) + (1 — wa) Z N (i) — 1)
s=1 s=Sp+1
Sh . 2
_ ~ \2 Ws *
=(U=@a) || D T mhly
s=So+1
= (1—@a)” | (Wr) — p))?, (S3.119)

where wr = (0,0, ..., Wgy+1/(1 — Wa), ..., Ws, /(1 —Wa))*. Considering w =

arg ming ey CV; (W), we see that CV; (W) — |€]|? < CV,, (w?) — |l€]|*.

Combining (S3.110))—(S3.118) leads to

Ly(w)
= Op{S)*npumax(n — M) "*} + Op(Mund,,) + Op{Spnph(n — M,) "'}
+ Op(M?*nd?) + Op(S}/in/Q) + Op{Sé/zannnpmax(n — Mn)’lﬁ}
+ Op{ S22 p s (n — M) Y2LE V2 (W)Y
+ Op{M,n'?d, L (W)}
= Op{SY  nprax(n — M) V%Y + Op(Mynd,) + Op(SY*n'/?)
+ Op{ S22 p s (n — M) V2LE 2 (W)Y

+ Op{M,n*?d, L*"*(w)}, (S3.120)
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since Myd, = o(1) and Sy’ *prax(n— M, )~/ = o(1) implied by Condition.
which further leads to
Ly (W) = Op(S)/*n"?) + Op{Sunppa(n — My) ™'} + Op(Mpnds)
+ OP (Mnndn) + OP {8717,/2npmax(n - Mn)_l/Q}

= Op (M,nd,) + Op {Sl/ NPmax (N — 1/2} (S3.121)

Thus, by (S3.119) and ([S3.121]), we achieve

(1—@a)? = |p*(Wr) — pl| 20p {Mnd,, + Sy *npmax(n — M,)~?}.

(S3.122)

Now combining (S3.122)) and Conditions [7(z)| and [7(z:)], it is clear that

@Wa — 1 in probability. This completes the proof of Theorem [2] m

S3.6 Proof of Corollary

Proof of Corollary[1. First, we consider the squared loss of the averaging
estimator with w. Based on Lemma [I] and Condition [7, we can obtain

(S3.122)). Moreover, we observe that

L,(wW)
s, 2
= |2 iy =
s=1
So 2 Sn 2
<2 Z@s(ﬁ(s) —p)|| +2 Z Ws(Ks) — 1)
s=1 s=So+1
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<2 max |[fi) — pl" +20 - @a) max g, - pl

<2 max gy — uiy[|* + 20— @a) max 7 —

a0 —a) max (|| — uill” + |0t — ro%)

< 2 max Hﬁ(s) - If(ks) So<s<Sn

1<s<50

_ OP(Sopilax) + 5;1/2013 {(Mnndn)l/z + 571/4711/2 1/2 (n . Mn)_1/4}

pmax

X [Op{(Sn — S0)Phax} +O(n)] (S3.123)

where the last equality holds due to (S3.87)), (S3.122)) and Condition [2]

~ : ~ ~F  ~F ~F \T
Let wp = argminyew, CV 5, (w) and wp = (0, ...,0, W, 41, Wg, 9, -, W, )"
Next, we consider the squared loss of the averaging estimator using wp.

Then, from (S3.87)), we have

Sn Sh
o @l — )| < D @ B — wi
s=Sp+1 s=Sp+1

< max |[fe) — Byl

T So<s<Sy,
= O0p{(Sn — S0)*pmax}- (S3.124)
On the other hand, it is clear that
Sh, Sh,
P . « 1/2
S oalply—w| 2 i || Y wpiy - )| =7 (83.125)
s=Sp+1 F s=Sp+1

So combining ([$3.124), (S3.125)) and Condition 8} we can write L, (W)

as

Ln("’VVF)
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2

Sn
~F ;~ * *
=l D 0 (B — mis) + s — 1)
s=Sp+1
Sn Sn 2
~F s~ * ~F *
> D @ (Hy —m()|| — | D @ (uiy —m)
s=Sp+1 s=Sp+1
Sn 2 Sn Sn -1
~F * ~F -~ * ~F *
= > @ (u{y —n) Do W (B —m)| || Do @ il — || -1
s=Sp+1 s=So+1 s=Sp+1
Sn, Sn -t
~F j~ * ~F *
>er || D0 W (e —m)|| || Do @ (k) — )| -1
s=Sp+1 s=Sp+1
= ¢r(an —1)%, (S3.126)
where
Sn Sn N 1/2
~F ;~ * ~F * (Sn - SO) Pmax
an = Z Ws (ll’(s) - H(s>) Z Ws (N(s) —H) < - a2~ op(1),
s=Sp+1 s=Sp+1 F
(S3.127)

and the last equality in (S3.127)) is due to (S3.124), (S3.125)) and Condi-

tion [3(z)] Thus, following the similar proof strategy of Theorem [I we can

use Conditions b and to obtain that

L, (Wr)
infwew, Ln(W)

— 1 in probability. (S3.128)

Finally, combining (S3.123), (S3.126]) and (S3.128)), we see that

L, (W)
infwewy Ln(W)
_ Ln (‘/‘\’) Ly, (WF)
Ln(Wr) infwew, Ln(W)
Ly, (W) L (Wr)

N £F(an - 1)2 ianGVVF Ln(w)

= (£FIOP(Sopilax) + & 20p {(Mynd,)'V? + 830 2pi2% (n — M,) ™M)
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< [0p{(Sy ~ Su)us} + O] ) {1+ 0n(1)
_ f1;3/2013 {nS/Q(Mndn)l/Q + 571L/4n3/2p11n/3x( Mn)71/4}
= op(1), (S3.129)
where the last equality holds due to Condition 8 This completes the proof

of Corollary [1] O

S3.7 Proof of Corollary

Proof of Corollary[9. This corollary can be shown in the similar way of

proving Theorem [I] First, we need prove the following equations:

sup (3" (w) = ™ (w) /LI () = o5 (1), (3.130)
sup ([ (w) — 5" (w) [}/ LI (w) = op(1), (83.131)
sup [l (w) = 5" (w) [/ LI (w) = op(1), (83.132)
sup (" (w) = ™ (w)) el /LT (w) = 0p(1), (33.133)
sup [("(w) = ™ (w)) el /LT (w) = op(1), (53.134)
sup (" (w) — ™ (w)) el /LI (w) = op(1). (83.135)

Here ((S3.132)) and ([S3.135]) can be obtained similarly to (53.91)) and (S3.94)),

respectively. Thus we examine the remaining equations in turn.
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We start with showing (S3.130)). It can be shown that

2
sup |["(w) — " (w))|

wew
Sn Sn, 2
= su\}/)\} ZwsK(s) ﬁ<s) Z“’SK(S) B<s>)
weE
< K (BR )y — K (B() ‘
< max ||K@(B)y — K@ (B y)

B n N T ,AR o~ T  gRx }2
R Zl {!J(s)(X(s),zﬁ(s)) 9) (X(1,i8(5))

. ~(1) | o~ ~()
T 8g(s>(x€9),iﬂ(s)) ag(s)(xa),lﬂ(s))

" =) e =
R\ T ag(s)(XEFS),iIB(S)) 6g(s)(x(s),iﬂ(s)) T
1205, - (% 855) (e<s>@ 9By, opL, O

X (BZ) - ﬁf?;)

" /~R . ~R .
max (ﬁ<s) —ﬁ&) (ﬂ@) _ﬁ&)
1

1<s<S,, 4
P

3\>—‘

1<s< Sy

<n max )\max{

. ~ (@) . ~ (@)
Z e ag(é)(xg‘s),zﬂ(s)) 89(5) (X’(Ts),'u@(s)) o) eT
2\ o, 0B ) ©

SR Rx 2
By — Bs)

X max
1<s<Sp

~R R 2
= Orlaann, max ||Br) - B

= Op(Gmax)n** S = Op(n** 7 gmax), (S3.136)

~(i ~R
where ,BES)) lies between B, and ﬁﬁ’; and thus also in the neighborhood
(’)(Bﬁj, p) for some constant p according to Condition when n is suf-
ficiently large, e, is a py X 1 vector whose ™ element e.); = I (B(ZM =+

0 or Bl (&1 # 0). The third-to-last equality is due to (S1.1)) in Condition .

Now, noting that

N2SP e SIngudae(n — M,)* V% Singadae(n — M,)*"1/% gine

gk & & n*(n — My)**!
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— op(1), (93.137)

where the last equality is from Condition [S.7(7)| and the fact that &, =

OP(TL)
Similar to (S3.136)), it can be seen that

~R*(

sup [|2"(w) — |*
wew

w)

SH[—[i/Mn1]

_ ~[-B(i)]
= Joax 2 {g(s> (X(s),iBs)

2
) — §(s)(X<Ts>,¢ﬁf3)}

n B(3)] ~ (i) ~[—B()] ()
SRI=[i/My]] ﬂR*)T {Zag(s (x(.iB) 9905 (. ﬁ(s))}
—HFs)

< max max
(B 9B 287,

T 1<s<8S, 1<i<n —
i=

[i/Mn1] *
X max (g(s) —ﬁ£)>

1<i<n
n ~-B@H)] 1 3@ =B 1 Z®
<n max A 1 Z e 0O 99 (X(5),iB(s)) 99, (X(s),iB(s)) oef
— T 1<s<Sn, max o pt (s) aﬁ(s) aIB(TS) (s)
SRI=Ti/MnT] R 2
X 1I§'La<xn ﬁ(s) _’3(3)
_ ~R[—[i/My]] Rre||?
= Op(Gmax)n  Jnax  max Bis B

= Op {n(n — M,)** 'SV gumax } » (S3.138)

where B(S lies between ﬁ /A and ,3( in the neighborhood (”)(ﬁ (5): P)

with some constant p according to Condition for sufficiently large n and
e(s) is a ps x 1 vector whose i element e),; = I(ﬁ l/M“ =+ 5 ), and

the second-to-last equality is based on (3.10)) in Condition [5| Also note that

n(n — Mn)%‘_l&?ﬂqmaLX Sy Tngulee(n — M,)*~Y2 STnghla(n — M,)*=1/2 &
& & & n
— o(1), ($3.139)
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where the last equality is based on Condition |S.7(7)[ and the fact that &, =
O P (TL)

From ([S3.136f), we have
sup [{7"(w) — ™ (w)} €| /LI (w)

wew

<& sup ||t (w) — p (w)ll]e]

wew

— Op(gf—lnl/}i-as'y 1/2 )

qm ax

=o(1). (S3.140)
Further, by (S3.138)), it is clear that

sup [{A"(w) — " (w)} el /L (w)

wew

< & sup || (w) — @ (w)|l[le|
wew

_ OP {gffln(n_ M a— 1/2S'y 1/2}

qm ax

= op(1), (53.141)

Next, we deal with every term in the high-dimensional versions of
and , where all p’s contain the superscript R. The treat-
ments of terms (7) and {3-{3 remains the same as in the proof of Theorem I
but the other terms should be treated differently.

For term ), we see that

sup {5 (w) — p}"{@"(w) — 5" (W)} /L) (w)

wew
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= {0p(&, 'S i) + L}or(1)

= op(1). (S3.142)
For term (9), we can show that

sup {B"(w) = p} {B" (w) — p™ (W)} /L (w)

= {0p(&,'nS)qu2) + 1}op(1)
= op(1). (53.143)

For term (0, we can show

sup (B (w) — p}™{p™ (w) — 5™ (w)}|/LE (w)
= {0p(&,'n"S) qpl2) + 1}op(1)

= op(1). (S3.144)

Finally, from (53.95), (53.99)~(53.101)), (S3.130)—(53.135) and (53.142)—

(S3.144]), we obtain

sup |Z1,(w)|/ L (w) = op(1). (S3.145)
wew

Note that by (S3.79), (S3.102)) and (S3.130]), we have

sup |Zgn(w)|/LE* (W) = op(1). (53.146)
wew

Therefore, similar to the proof of Theorem I}, we see that Corollary [2] holds.

O
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S4 Comparison with averaging weighted semipara-

metric least squares

To incorporate heteroscedastic errors, one may consider employing weighted
semiparametric least squares (SLS) to estimate each candidate model. Par-
ticularly, one can modify the objective function for each candidate model s

to incorporate a weighting scheme as

2
1 n n
H(s),n(ﬁ(s)) T Z w(x;) (?Jz - Z K(s),ij(ﬁ(s))%’)
i=1 j=1

=n" (y = K»(B)y) WX) (y - K(B)y)

where W(X) = diag{w(x1), w(X2), ..., w(x,)}, and w(x;) = 072(x;) is the
inverse of conditional variance of y; given x;. If W(X) is known, it is
straightforward to extend the theoretical analysis of the proposed averag-
ing estimator. However, W(X) is usually unknown and needs to be es-
timated in practice. Estimating unknown W (X) causes great theoretical
challenges because all of the candidate models are likely to be misspec-
ified in our framework and thus may lead to an inconsistent estimator of
W(X). Plugging-in an inconsistent estimator W(X) complicates the whole
theoretical analysis. Practically, it is also not clear whether the use of an
estimated W(X) can improve the estimation and prediction for the same

reason of possible model misspecification. Moreover, estimating unknown
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W (X) introduces extra errors which may in turn inflate the variance of
prediction.

To evaluate the prediction performance of averaging weighted and un-
weighted semiparametric least squares estimators, we consider finite- and
divergent-dimensional cases with and without correct models in the model
space, using simulation designs in the paper with the variance of each obser-
vation chosen from a uniform distribution ¢(1,5). Again, only the results
of n = 300 with the sine link function are reported here since those un-
der other settings are largely similar. Figure presents the NMSPEs of
the two estimators. We find that the two methods of estimating candidate
models (weighted vs. unweighted) generally lead to similar prediction per-
formance. The averaging estimator based on unweighted SLS even slightly
outperforms the weighted version in many cases, possibly due to less esti-
mation errors. For the reasons discussed above, we employ the unweighted
SLS to estimate each candidate model in the paper. Similar treatments can
be found in, e.g. Hansen and Racine| (2012) and |Liu and Okui| (2013), who
averaged ordinary least squares estimators (rather than generalized least
squares estimators) of all candidate models, even though heteroscedasticity

is assumed there.
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Figure S.9: NMSPEs of averaging weighted and unweighted SLS estimators (n = 300)
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