
Supplementary file to

“To pool or not to pool: What is a good strategy for parameter

estimation and forecasting in panel regressions?”

This supplementary file contains further theoretical properties of pooling averaging

approaches. We also provide additional simulation studies and empirical results here that

are not reported in the paper.

S.1 Unbiasedness of Mallows criterion

This section provides the theorem of the unbiasedness of Mallows criterion as an estimator

or the squared risk. Consider the model

yi = Xiβi + ui i = 1, . . . , N. (S.1)

The pooling averaging estimator can be obtained by

β̂(w) =
M∑

m=1

wmβ̂(m) =
M∑

m=1

wmPmβ̂ = P (w)β̂, (S.2)

We propose to obtain the weights of pooling averaging estimator by minimizing the Mallows

criterion as

CA(w) = ‖P (w)β̂ − β̂‖2A + 2tr[P ′(w)AV ]− ‖β̂ − β‖2A, (S.3)

Theorem S.1. Under model (S.1), the Mallows criterion defined in Equation (S.3) is an

unbiased estimator of the squared risk RA(w).

Proof. From (S.2), it is straightforward to show that

RA(w) = E{LA(w)} = E‖β̂(w)− β‖2A = E‖P (w)β̂ − β‖2A
= E‖P (w)β̂‖2A + ‖β‖2A − 2β′P ′(w)Aβ

and

E{CA(w)} = E‖P (w)β̂ − β̂‖2 + 2tr {P ′(w)AV } − tr(AV )

= E‖P (w)β̂‖2A + E‖β̂‖2A − tr(AV )
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−2E
{
β̂′P ′(w)Aβ̂

}
+ 2tr{P ′(w)AV }

= E‖P (w)β̂‖2A + ‖β‖2A − 2β′P ′(w)Aβ. (S.4)

So CA(w) is an unbiased estimator of RA(w).

S.2 Equivalence of MPA and Stein-rule estimators

This sections provides the details on the relation between the MPA and the Stein-rule

shrinkage estimator. Our pooling averaging estimator includes the shrinkage estimator of

Maddala et al. (1997) as a special case. The shrinkage estimator is defined as

β̂shrinkage =
(

1− ν

F

)
β̂ +

ν

F
β̂pool, (S.5)

where ν = [(N − 1)k − 2]/[NT − Nk + 2] and F is the test statistic for null hypothesis

H0 : β1 = . . . = βN . More specifically, if we denote R̃ as the restriction matrix associated

with H0 and

σ̃2 = (Y −Xβ̂)′(Y −Xβ̂)/(NT −Nk), (S.6)

the rank of R̃ is k(N − 1) and the F statistic is

F = (R̃β̂)′(R̃(X ′X)−1R̃′)−1(R̃β̂)/[(N − 1)kσ̃2]. (S.7)

The shrinkage estimator can be regarded as the pooling average of only the pooled and

individual estimators.

Now we shall show how the Mallows pooling averaging estimator is associated with

the shrinkage estimator of Maddala et al. (1997) in the context of combining only two

estimators, β̂ and β̂pool. In this case, the averaged estimator is β̂(w) = w1β̂ + w2β̂pool.

Following Maddala et al. (1997), we assume σ2
1 = · · · = σ2

N = σ2, and σ2 can be estimated

by σ̃2 as in (S.6). We consider the case with A = X ′X. If the F statistic given by (S.7) is

larger than 1, such that 1/F ∈ [0, 1], then by minimizing C∗A(w) we can obtain

ŵ2 =
1

F
. (S.8)

This result suggests that if we only average the pooled and individual estimators and

1/F ∈ [0, 1], then the Mallows pooling averaging estimator is essentially a Stein-rule es-

timator (see Equation (2) of Maddala et al. (1997)). The weights of the Mallows pooling
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averaging estimator and the shrinkage estimator defined by (S.5) are proportional to each

other (see also Hansen, 2014). We provide the proof of (S.8) below.

Proof. Let Ppool = INk − (X ′X)−1R̃′(R̃(X ′X)−1R̃′)−1R̃, where R̃ is defined below (S.5).

When A = X ′X, we have

C∗A(w)

= ‖w1β̂ + w2β̂pool − β̂‖2A + 2tr[(w1INk + w2P
′
pool)AV̂homo]− ‖β̂ − β‖2A

= ‖(1− w2)β̂ + w2β̂pool − β̂‖2A + 2tr[((1− w2)INk + w2P
′
pool)AV̂homo]− ‖β̂ − β‖2A

= w2
2‖β̂ − β̂pool‖2A + 2w2tr(P

′
poolAV̂homo) + 2(1− w2)tr(AV̂homo)− ‖β̂ − β‖2A

= w2
2‖β̂ − β̂pool‖2A + 2w2σ̃

2 {tr(Ppool)−Nk}+ 2σ̃2Nk − ‖β̂ − β‖2A, (S.9)

where the last two terms have nothing to do with w. From (S.7) and

tr((X ′X)−1R̃′(R̃(X ′X)−1R̃′)−1R̃)

= tr((X ′X)−1/2R̃′(R̃(X ′X)−1R̃′)−1R̃(X ′X)−1/2)

= rank(R̃)

= (N − 1)k,

we have

σ̃2 {Nk − tr(Ppool)}
‖β̂ − β̂pool‖2A

=
σ̃2(N − 1)k

β̂′R̃′(R̃(X ′X)−1R̃′)−1R̃β̂
=

1

F
. (S.10)

So when 1/F ∈ [0, 1], we can obtain (S.8).

S.3 Additional Monte Carlo Simulation

This section provides various extensions of simulation, including extensions in the data

generation process and methods.

Comparison with more average-effect estimators

In this section, we compare our pooling averaging forecast with various average-effect-based

forecasts. In particular, we consider Swamy’s FGLS estimator, mean-group estimator,
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and optimal average-effect estimator that chooses the weights by minimizing the risk.

One of the main differences of our estimator from the average-effect estimator is that the

latter averages over individual estimator β̂i across individual units, whereas our estimator

averages restricted estimators β̂(m) over different pooling strategies. Thus the model space

of our estimator is much larger and the resulting estimator is of distinct dimension. In

particular, Swamy’s estimator is essentially a generalized least square estimator (GLS),

and its feasible version can be obtained by

̂̄βFGLS =

(
N∑
i=1

X ′iΨ̂
−1
i Xi

)−1( N∑
i=1

X ′iΨ̂
−1
i yi

)
,

where Ψ̂i = Xi∆̂X
′
i + σ̂2

i IT , σ̂2
i is the estimated variance of residuals for individual i, and

∆̂ =
1

N − 1

N∑
i=1

(
β̂i −

1

N

N∑
i=1

β̂i

)(
β̂i −

1

N

N∑
i=1

β̂i

)′
.

Equivalently, it can also be written as

̂̄βFGLS =
N∑
i=1

Wiβ̂i, (S.11)

where Wi =
[∑N

j=1{∆̂ + σ̂2
j (X ′jXj)

−1}−1
] [

∆̂ + σ̂2
i (X ′iXi)

−1
]−1

. Another closely related

estimator is the mean group estimator (Pesaran and Smith, 1995) that uses equal weights

in (S.11), namely ̂̄βMG =
1

N

N∑
i=1

β̂i.

Finally, we consider choosing the weights in the mean-group estimator optimally by

minimizing the risk (rather than using equal weights 1/N). In particular, we consider̂̄βOPT =
∑N

i=1 ω
∗
i β̂i, where the weights ω∗i for i = 1, . . . , N are chosen to minimize the risk.

To this end, we first need to derive the MSE of β̂AP . We can show that

MSE(̂̄βOPT) =
N∑
i=1

E||
N∑
j=1

ω∗j β̂j − βi||2

=
N∑
i=1

E||
N∑
j=1

ω∗j β̂j − β̂i + (X ′iXi)
−1X ′iui||2

=
N∑
i=1

[
E||

N∑
j=1

ω∗j β̂j − β̂i||2 − σ2
i (1− 2ω∗i )(X ′iXi)

−1

]
.
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The risk of ̂̄βOPT under the squared error loss can be written as the trace of MSE(̂̄βOPT),

and it can be obtained by

R(̂̄βOPT) =
N∑
i=1

[
‖

N∑
j=1

wjβ̂j − β̂i‖2 − σ̂2
i (1− 2wi)tr(Z

′
iZi)

−1

]
.

If we denote ω∗ := (ω∗1, . . . , ω
∗
N)′ and D̂i := (β̂1 − β̂i, . . . , β̂N − β̂i) for i = 1, 2, . . . , N , then

the optimal weights that minimize the risk can be obtained by minimizing the following

quadratic function

ω∗ = arg min
ω∗

ω∗
′

N∑
i=1

D′iDiω
∗ + 2v′w − ι′v,

where v := (v1, . . . , vN)′ with vi := σ̂2
i tr(Z ′iZi)

−1.

The results are given in Table S.1 and S.2. We find that our pooling averaging forecast

outperforms the forecast based on any average-effect estimator in the heterogeneous panels,

while the latter is more preferable in the homogeneous panels. Note that the MSFEs

produced by FGLS, OPT, and MG are close to that of the pooled estimator, because they

all estimate a common average-effect for all individual units.1 Thus the similar comparison

between the pooled and pooling averaging estimator also applies when we compare pooling

averaging with Swamy’s type and other average-effect estimator. Among the three average-

effect estimator considered here, FGLS and OPT produce similar MSFE, marginally smaller

than that of MG.

1Interestingly, the forecast using FGLS is not necessarily better than the pooled forecast, although FGLS

is the best linear unbiased estimator in heterogeneous panels (the MSE of FGLS coefficient estimator is

indeed smaller than that of the pooled estimator). Nevertheless, as shown in the response to Comment 5,

forecasts using FGLS outperforms the pooled forecast when R2 is decreased or when T is increased.
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Alternative pre-screening methods

To examine whether the performance of competing methods is sensitive to the choice of

pre-screening method, here we consider a different type of clustering method from C-Lasso.

One interesting alternative is the mixture-like iterative (M-Estimation) method proposed

by Liu et al. (2018). Like C-Lasso, the M-estimation method also provides a consistent

estimate of group membership if there is a group pattern of slope heterogeneity and the

number of groups is not under-specified. This method has both pros and cons. A potential

advantage of M-estimation over C-Lasso is that it does not involve a tuning parameter.

Nevertheless, its optimization is an NP-hard problem. The iterative algorithm relies on the

initial values, and the global optimum is not theoretically guaranteed. With sufficiently

large number of trials of initial values, we expect that M-Estimation and C-Lasso produce

similar forecasts. To use M-estimation for shrinking the model space, we employ Liu et

al.’s (2018) procedure to estimate the latent group structure given the number of groups

ranging from 1 to Gmax, and then average over forecasts obtained from different choices

of this number. Thus the M-estimation method is used to shrink the model space, as the

C-Lasso is used in the paper. Based on the pre-screened model space, all the methods

(including MPA, IC-based methods, BPA, etc.) are implemented and compared. The

results are summarized in Table S.3 and S.4. We find that using M-estimation and C-

Lasso as a pre-screen method of model space leads to highly robust results. MPA remains

the best method in most cases of heterogeneous panels, while the pooled forecast is the best

choice in homogeneous panels. We also compare our pooling averaging forecast with the

forecast produced by M-estimation method using the optimal number of groups (M-Est)

proposed by Liu et al. (2018). The comparison results are also summarized in Table S.3

and S.4. Compared with the M-Est, MPA again demonstrates its advantages since it

directly aims at minimizing the MSFE and trades off the efficiency and bias in a sensible

way.

Another alternative pre-screening procedure can be based on agglomerative hierarchical

clustering. The procedure starts with normalizing the estimated coefficients

β̂il = β̂il/max{|β̂1l|, . . . , |β̂Nl|}

for each l = 1, . . . , k, so that the coefficients of the regressors have the same scale between

[−1, 1]. Normalization avoids the numerical problems caused by extremely large numbers,

and also allows us to group coefficients of different regressors using the same criteria. In
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Table S.3: Risk comparison based on M-estimation: Independent regressors with R2 = 0.9

DGP MPA BPA M-Est SAIC SBIC AIC BIC Pool SHK

1 0.130 0.366 0.633 0.484 0.143 0.583 0.163 0.101 0.742

N = 10 2 0.527 0.584 0.917 0.716 0.689 0.769 0.797 4.342 0.955

T = 20 3 0.716 0.800 1.042 0.938 0.935 1.039 1.018 2.640 0.934

4 1.062 1.356 2.269 1.362 1.493 1.447 1.668 14.53 0.984

1 0.223 0.246 0.479 0.576 0.307 0.640 0.354 0.034 0.701

N = 30 2 0.330 0.411 0.698 0.582 0.501 0.597 0.533 4.148 0.943

T = 20 3 0.540 0.717 0.807 0.827 0.759 0.862 0.824 2.317 0.911

4 0.547 0.724 0.803 0.820 0.747 0.847 0.810 1.733 0.891

1 0.130 0.370 0.649 0.488 0.125 0.585 0.131 0.094 0.876

N = 10 2 0.392 0.483 0.848 0.645 0.444 0.701 0.469 8.852 0.988

T = 40 3 0.798 0.861 1.274 1.044 1.188 1.141 1.308 5.153 0.981

4 1.436 2.061 4.092 1.944 2.025 1.998 2.192 29.94 0.996

1 0.220 0.249 0.487 0.570 0.257 0.645 0.308 0.033 0.854

N = 30 2 0.230 0.288 0.769 0.506 0.374 0.525 0.401 8.257 0.985

T = 40 3 0.598 0.766 1.013 0.890 0.834 0.910 0.911 4.596 0.975

4 0.583 0.775 0.935 0.858 0.818 0.884 0.885 3.503 0.969

Notes:

1. Forecasts constructed using: MPA: Mallows pooling averaging estimator; BPA: Bayesian model aver-

aging; M-Est: M-estimation with the optimal number of groups; SAIC/SBIC: pooling averaging estimator

based on relative values of AIC/BIC; AIC/BIC: estimator selected based on minimum value information

criterion; Pool: pooled estimator; SHK: shrinkage estimator.

2. All numbers are divided by the risk of the individual time series forecast.
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Table S.4: Risk comparison based on M-estimation: Autoregressive regressors with R2 =

0.9

DGP MPA BPA M-Est SAIC SBIC AIC BIC Pool SHK

1 0.114 0.353 0.621 0.478 0.130 0.569 0.142 0.096 0.745

N = 10 2 0.547 0.604 0.960 0.729 0.726 0.782 0.811 4.384 0.955

T = 20 3 0.695 0.789 1.002 0.910 0.901 1.021 0.972 2.598 0.929

4 1.043 1.348 2.259 1.330 1.484 1.411 1.646 14.67 0.984

1 0.189 0.238 0.458 0.547 0.281 0.613 0.323 0.032 0.701

N = 30 2 0.352 0.435 0.756 0.584 0.498 0.599 0.521 4.171 0.942

T = 20 3 0.553 0.698 0.804 0.816 0.738 0.851 0.802 2.326 0.909

4 0.572 0.729 0.805 0.813 0.734 0.845 0.790 1.728 0.891

1 0.121 0.364 0.628 0.470 0.113 0.564 0.113 0.101 0.875

N = 10 2 0.433 0.490 0.921 0.658 0.479 0.715 0.516 8.548 0.988

T = 40 3 0.784 0.851 1.233 1.037 1.186 1.150 1.305 5.185 0.980

4 1.384 2.011 3.812 1.845 1.988 1.919 2.147 29.30 0.996

1 0.205 0.244 0.473 0.559 0.246 0.628 0.292 0.033 0.855

N = 30 2 0.235 0.298 0.745 0.511 0.376 0.526 0.406 8.215 0.985

T = 40 3 0.616 0.782 1.002 0.907 0.854 0.938 0.921 4.535 0.975

4 0.597 0.779 0.945 0.864 0.830 0.892 0.892 3.532 0.968

Notes:

1. Forecasts constructed using: MPA: Mallows pooling averaging estimator; BPA: Bayesian model aver-

aging; M-Est: M-estimation with the optimal number of groups; SAIC/SBIC: pooling averaging estimator

based on relative values of AIC/BIC; AIC/BIC: estimator selected based on minimum value information

criterion; Pool: pooled estimator; SHK: shrinkage estimator.

2. All numbers are divided by the risk of the individual time series forecast.
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the second step, we group the normalized coefficient estimates based on their differences.

To incorporate estimation uncertainty in the coefficient estimates, we employ the Bhat-

tacharyya distance. If we assume that the individual estimators are normally distributed,

then the Bhattacharyya distance between two coefficient estimates can be obtained by

DBij,l =
1

4

(β̂i,l − β̂j,l)2

σ̂2
i,l + σ̂2

j,l

+
1

2
ln

(
σ̂2
i,l + σ̂2

j,l

2σ̂i,lσ̂j,l

)
, (S.12)

where σ̂2
i,l is the estimated variance of β̂i,l, and σ̂2

l = (σ̂2
i,l + σ̂2

j,l)/2. In the third step, we

employ agglomerative hierarchical clustering (AHC). In the AHC procedure, each estimate

starts in its own cluster, and at each step pairs of clusters are merged until a hierarchical

tree is formed. As the last step, one can decide where to cut the hierarchical cluster tree

to produce the clustering. We cut the tree by specifying the number of clusters G, and

the algorithm automatically gives a unique clustering. By varying G from 1 to Gmax, we

numerate all “reasonable” clusterings. A significant advantage of using AHC for clustering

is its low computational cost. This algorithm leads to slightly different clustering results

from C-Lasso, but the main results are qualitatively unchanged.

Weaker degree of heterogeneity

The degree of heterogeneity depends jointly on how far apart the coefficient values are and

also how many groups there exist. We have examined how the performance of methods

depends on the number of groups. Here we investigate the role of heterogeneity from a

different perspective and consider the cases where the parameters are closer across groups

while the number of groups remains the same. We fix the number of groups as in DGP 3

(strongly heterogeneity), but vary the size of coefficients, so that the discrepancy between

individuals is smaller. In particular, we set the slope coefficients as

βi1, βi2 =


b1, i = 1, . . . , [N/4]

b2, i = [N/4] + 1, . . . , [N/2],

b3, i = [N/2] + 1, . . . , [3N/4],

b4, i = [3N/4] + 1, . . . , N,

βi3 =


b1, i = 1, . . . , [N/5]

b2, i = [N/5] + 1, . . . , [2N/5],

b3, i = [2N/5] + 1, . . . , [3N/5],

b4, i = [3N/5] + 1, . . . , N,

The difference between the b1, . . . , b4 determines the degree of heterogeneity. We consider

two cases of b = (b1, b2, b3, b4)

b = (3, 3.25, 3.5, 3.75), and b = (3, 3.1, 3.2, 3.3).
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Table S.5: Risk comparison: DGP 3 with smaller difference in slope coefficients

N T MPA BPA C-Lasso SAIC SBIC AIC BIC Pool SHK

b = (3, 3.25, 3.5, 3.75)

10 20 0.228 0.425 0.677 0.567 0.257 0.664 0.284 0.213 0.769

30 20 0.278 0.317 0.517 0.608 0.392 0.670 0.434 0.139 0.730

10 40 0.309 0.445 0.717 0.613 0.350 0.714 0.390 0.317 0.900

30 40 0.317 0.342 0.547 0.631 0.413 0.694 0.449 0.248 0.880

10 80 0.435 0.479 0.743 0.659 0.520 0.754 0.584 0.550 0.959

30 80 0.370 0.371 0.576 0.651 0.451 0.713 0.477 0.458 0.951

b = (3, 3.1, 3.2, 3.3)

10 20 0.151 0.388 0.651 0.512 0.166 0.615 0.182 0.126 0.748

30 20 0.238 0.265 0.489 0.581 0.329 0.647 0.380 0.057 0.708

10 40 0.175 0.393 0.662 0.518 0.176 0.621 0.190 0.144 0.883

30 40 0.248 0.276 0.503 0.594 0.299 0.660 0.350 0.082 0.860

10 80 0.215 0.399 0.678 0.534 0.209 0.634 0.218 0.197 0.945

30 80 0.281 0.294 0.525 0.601 0.322 0.672 0.366 0.128 0.935

The results are displayed in Table S.5. As expected, a smaller difference between the

slope coefficients leads to a weaker degree of heterogeneity, and further favours the pooled

estimator, even though the number of groups is unchanged.

S.4 Additional results of empirical applications

This section presents the estimated effect of determinants of sovereign CDS spreads us-

ing pooled and individual estimation. The first column of Table S.4 presents the pooled

estimates, and the individual estimates are provided in the remaining columns.
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Table S.6: Effects of CDS spreads determinants: Pooled and individual estimation

Pooled estimation Individual estimation

Brazil Bulgaria Chile China Hungary Japan

lstock −0.0651 −0.2389 −0.1244 0.0149 −0.0605 0.0190 −0.1453

(0.0293) (0.0416) (0.0237) (0.0333) (0.0278) (0.0385) (0.0272)

fxrates 0.0172 −0.0548 0.0254 0.1541 −0.0324 0.0721 −0.0330

(0.0266) (0.0355) (0.0292) (0.0297) (0.0232) (0.0338) (0.0220)

fxres 0.0174 −0.0990 0.0022 0.1393 0.0596 −0.0526 0.1327

(0.0225) (0.0215) (0.0267) (0.0207) (0.0260) (0.0234) (0.0242)

gstock 0.1007 0.1360 −0.0094 0.0604 0.1350 0.1000 0.2377

(0.0420) (0.0441) (0.0385) (0.0428) (0.0436) (0.0399) (0.0430)

trsy −0.0836 −0.0504 −0.0773 −0.1699 −0.1467 −0.1188 0.0797

(0.0307) (0.0301) (0.0300) (0.0298) (0.0309) (0.0302) (0.0340)

hy −0.0769 −0.0792 −0.0562 −0.1875 −0.0644 −0.0187 0.0676

(0.0292) (0.0290) (0.0282) (0.0285) (0.0296) (0.0280) (0.0289)

eqp 0.1662 0.0403 0.1713 0.0969 0.0926 0.3316 0.3166

(0.0356) (0.0354) (0.0351) (0.0354) (0.0360) (0.0350) (0.0347)

volp −0.1413 −0.0211 −0.2639 −0.1677 −0.0988 −0.0991 −0.2836

(0.0221) (0.0217) (0.0213) (0.0216) (0.0226) (0.0212) (0.0214)

ef −0.1131 −0.0373 −0.0564 −0.1157 −0.1215 −0.1381 −0.0974

(0.0242) (0.0241) (0.0243) (0.0234) (0.0261) (0.0234) (0.0240)

bf −0.0698 0.0107 −0.0746 −0.0750 −0.1325 −0.0471 0.0339

(0.0225) (0.0228) (0.0218) (0.0223) (0.0228) (0.0221) (0.0222)

Note:

1. Standard deviations are given in the parentheses.

2. The individual estimates differ from those of Longstaff et al. (2011) because we use an updated

sample with a longer time span, and include the lagged values of determinants as the explanatory

variables.
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Table S.4 (con’t): Effects of CDS spreads determinants: Pooled and individual estimation

Individual estimation

Korea Malaysia Philippines Poland Romania Slovak S.Afrika Thailand

lstock 0.0326 −0.1231 0.1919 −0.0280 −0.0788 0.0395 −0.1763 −0.2832

(0.0374) (0.0339) (0.0290) (0.0396) (0.0337) (0.0245) (0.0318) (0.0330)

fxrates 0.0269 0.0046 0.1405 −0.0703 0.1099 0.0541 −0.0793 −0.1795

(0.0339) (0.0310) (0.0277) (0.0372) (0.0323) (0.0279) (0.0272) (0.0307)

fxres 0.1051 0.0434 0.1792 −0.0691 −0.0182 −0.1015 −0.0125 0.0488

(0.0289) (0.0237) (0.0218) (0.0253) (0.0247) (0.0218) (0.0223) (0.0245)

gstock −0.0025 0.1967 −0.0129 0.0460 −0.0528 0.1218 0.1783 0.2598

(0.0449) (0.0428) (0.0431) (0.0426) (0.0397) (0.0406) (0.0445) (0.0428)

trsy −0.1691 −0.0433 −0.0151 −0.0995 −0.0946 −0.2361 −0.0331 0.0158

(0.0308) (0.0302) (0.0307) (0.0303) (0.0299) (0.0314) (0.0303) (0.0300)

hy −0.1977 −0.0835 −0.0718 −0.0321 −0.0188 −0.1178 −0.1132 −0.0902

(0.0292) (0.0291) (0.0295) (0.0289) (0.0288) (0.0292) (0.0288) (0.0283)

eqp 0.1837 0.2692 0.0530 0.2601 −0.0136 0.0348 0.1249 0.3055

(0.0356) (0.0360) (0.0361) (0.0360) (0.0366) (0.0357) (0.0349) (0.0349)

volp −0.1482 −0.1266 −0.1142 −0.1746 −0.1581 −0.0610 −0.1138 −0.1652

(0.0224) (0.0219) (0.0222) (0.0219) (0.0217) (0.0224) (0.0218) (0.0216)

ef −0.1215 −0.1415 −0.0834 −0.0791 −0.0743 −0.1188 −0.2237 −0.1437

(0.0253) (0.0249) (0.0238) (0.0243) (0.0240) (0.0240) (0.0242) (0.0232)

bf −0.0569 −0.0789 −0.0418 −0.0723 −0.0716 −0.1666 −0.1455 −0.1229

(0.0228) (0.0231) (0.0230) (0.0231) (0.0222) (0.0234) (0.0233) (0.0224)

Note:

1. Standard deviations are given in the parentheses.

2. The individual estimates differ from those of Longstaff et al. (2011) because we use an updated

sample with a longer time span, and include the lagged values of determinants as the explanatory

variables.
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