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Abstract Prediction under model uncertainty is an important and difficult is-

sue. Traditional prediction methods (such as pretesting) are based on model

selection followed by prediction in the selected model, but the reported predic-

tion and the reported prediction variance ignore the uncertainty from the selec-

tion procedure. This paper proposes a weighted-average least squares (WALS)

prediction procedure that is not conditional on the selected model. Taking

both model and error uncertainty into account, we also propose an appropri-

ate estimate of the variance of the WALS predictor. Correlations among the

random errors are explicitly allowed. Compared to other prediction averaging

methods, the WALS predictor has important advantages both theoretically and

computationally. Simulation studies show that the WALS predictor generally

produces lower mean squared prediction errors than its competitors, and that

the proposed estimator for the prediction variance performs particularly well

when model uncertainty increases.
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1 Introduction

In econometric practice one typically first selects the ‘best’ model based on di-

agnostic tests (t-ratios, R2, information criteria) and then computes estimates

within this selected model. This is called ‘pretesting’ (Leeb and Pötscher, 2003,

2006, 2008). There are many problems with this procedure (Magnus, 1999;

Magnus and Durbin, 1999; Danilov and Magnus, 2004a,b), but the most im-

portant is that model selection and estimation are completely separated so that

uncertainty in the model selection is ignored when reporting properties of the

estimates. An alternative is to average the results obtained from all candi-

date models, but weighed to allow for prior confidence in the various models.

This is called ‘model averaging’ and it has two major advantages. First, it

avoids arbitrary thresholds (like 1.96), thus forcing continuity on a previously

discontinuous estimator; second, it allows us to combine model selection and

estimation into one procedure, thus moving from conditional to unconditional

estimator characteristics.

Much of the model averaging literature has concentrated on estimation

rather than on prediction. In this paper we concentrate on prediction (forecast-

ing), which may in fact be a more appropriate application of model averaging,

because the interpretation of coefficients changes with different models but the

predictor always has the same interpretation. A substantial literature on the av-

eraging of forecasts exists, going back to Bates and Granger (1969); see Granger

(2003), Yang (2004), Elliott and Timmermann (2004), and Aiolfi and Timmer-

mann (2006) for some recent contributions, and Hendry and Clements (2004)

and Timmermann (2006) for recent reviews. Simulation and empirical studies

indicate that predictors based on a set of models generally perform better than

predictors obtained from a single model (Stock and Watson, 2004; Jackson and

Karlsson, 2004; Bjørnland et al., 2012).

Our paper has two main contributions. First, we introduce the prediction

counterpart to the weighted-average least squares (WALS) estimator proposed

in Magnus et al. (2010) and study its properties in simulations. The WALS pro-

cedure avoids some of the problems encountered in standard Bayesian model

averaging (BMA). In particular, the prior is based on a coherent notion of

ignorance, thus avoiding normality of the prior and unbounded risk. Also,

the computational burden increases linearly rather than exponentially with the

number of regressors because of the so-called semi-orthogonalization, and is

therefore trivial compared to other model averaging estimators such as stan-

dard BMA, model-selection-based weights methods (Buckland et al., 1997; Hjort

and Claeskens, 2003), exponential reweighing (Yang, 2004), or Mallows model

averaging (Hansen, 2007, 2008). Our proposed method explicitly allows for cor-

relation in the observations, including possible correlation between the errors in

the realized sample and the predictive sample.

The second contribution of the paper is that we propose an estimate for

the prediction variance taking model uncertainty into account, and evaluate

the accuracy of this estimate. The typical researcher’s instinct is to favor a
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predictor with a small variance over one with a large variance. We argue that

what we require is not a small but a ‘correct’ variance: in a situation with

much noise a predictor with a small variance can cause much harm, while a

truthfully reported large variance may lead to more prudent policy. In fact, one

of the problems with the credibility of econometric predictions may be that our

reported prediction variances are too small, and this is caused, at least in part,

by the fact that model uncertainty is ignored.

The paper is organized as follows. Sections 2–7 develop the theory. In

Section 2 we set up the model and present the traditional predictor. The com-

monly employed conditional predictor is presented in Section 3, and the WALS

predictor in Section 4. In Section 5 we discuss the computation of the WALS

predictor based on the Laplace prior. An estimator for the variance of the

WALS predictor is proposed in Section 6. Finally, in Section 7, we discuss the

estimation of unknown parameters in the variance matrix of the random distur-

bances. Then, in Sections 8–11, we compare the WALS predictor with its most

important competitors: unrestricted maximum likelihood, pretesting, ridge re-

gression, and Mallows model averaging. Our comparison is conducted through

a large number of Monte Carlo simulation experiments, controlling for sample

size, parameter values, and variance specifications. The simulation results show

that the WALS predictor typically has the lowest mean squared prediction error

among the predictors considered, and that the more uncertainty exists in the

model, the better is the relative performance of WALS. Section 12 concludes.

2 The traditional predictor

Our framework is the linear regression model

y = Xβ + u, (1)

where y is a vector of N observations on the dependent variable, X (N ×k) is a

matrix of regressors, u is a random vector ofN unobservable disturbances, and β

is a vector of k unknown parameters. We assume throughout that 1 ≤ k ≤ N−1

and that X has full column-rank k. We are interested in some specific (possibly

future) values of the regressors Xf (Nf × k), and we wish to predict the value

yf (Nf ×1) likely to be associated with Xf . The regressorsX and Xf are taken

to be fixed. We assume that yf is generated by

yf = Xfβ + uf , (2)

and our task is to find a predictor ŷf of yf .

In general the observations will be correlated, and we shall assume that
(

u

uf

)
∼ N

((
0

0

)
,

(
Ω C′

f

Cf Ωf

))
, (3)

where the variance of (u, uf ) is a positive definite (N +Nf )× (N +Nf ) matrix,

whose component blocks Ω, Cf , and Ωf are functions of an m-dimensional
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unknown parameter vector θ = (θ1, . . . , θm)′. Normality of the errors is the

basis on which we build our conditional moments and the properties of the

WALS predictor. The role of the normality assumption in our theorems will

be discussed in more detail at the end of Section 6. Our theory applies to

both fixed and random regressors under strictly exogeneity (hence not to lagged

dependent variables). To simplify notation the following derivation treats the

regressors as fixed (at least for the moment); the results for random regressors

can be obtained similarly if we condition appropriately.

The joint distribution of u and uf in (3) implies that

E(uf |u) = CfΩ
−1u, var(uf |u) = Ωf − CfΩ

−1C′

f , (4)

so that

E(yf |y) = Xfβ + CfΩ
−1(y −Xβ). (5)

This leads to the traditional least squares predictor in the presence of a non-

scalar variance matrix:

ŷf = Xf β̂ + CfΩ
−1(y −Xβ̂), (6)

where β̂ = (X ′Ω−1X)−1X ′Ω−1y denotes the generalized least squares (GLS)

estimator of β, and it is assumed (for the moment) that θ is known; see Whittle

(1963, p. 53, Eq. (10)) for the general formula, and Johnston and DiNardo (1997,

Sec. 6.8) and Ruud (2000, Sec. 19.7) for the special case where Nf = 1 and the

errors follow an AR(1) process. The predictor (6) is normally distributed with

mean E(ŷf ) = Xfβ and variance

var(ŷf ) = Xf (X
′Ω−1X)−1X ′

f + Cf (Ω
−1 − Ω−1X(X ′Ω−1X)−1X ′Ω−1)C′

f (7)

from which we see inter alia that the presence of the covariance Cf increases

the variance of the predictor, and therefore that ignoring correlation leads to

misleadingly precise predictions.

The prediction error PE := ŷf − yf can be conveniently written as the sum

of two independent random variables:

PE = (Xf − CfΩ
−1X)(β̂ − β)− (uf − CfΩ

−1u), (8)

and the traditional predictor ŷf is a good predictor in the sense that it is unbi-

ased and that the prediction error has minimum variance

var(PE) = (Xf − CfΩ
−1X)(X ′Ω−1X)−1(Xf − CfΩ

−1X)′

+Ωf − CfΩ
−1C′

f (9)

in the class of linear unbiased estimators.

3 The conditional predictor

The previous section assumes that the data-generation process (DGP) and the

model coincide, which one might call the ‘traditional’ approach. In practice,
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the model is likely to be (much) smaller than the DGP. In this section we shall

assume that the model is a special case of the DGP obtained by setting some of

the β-parameters equal to zero. We do not know in advance which β-parameters

should be set to zero and we use model selection diagnostics (such as t- and F -

statistics) to arrive at a model that we like. Once we have obtained this model

we derive the properties of the predictor conditional on the selected model and

hence we ignore the noise generated by the model selection process. We call

this the ‘conditional’ approach. This is not quite right of course, and we shall

present a method which combines model selection and prediction in the next

section.

We distinguish between focus regressors X1 (those we want in the model

on theoretical or other grounds) and auxiliary regressors X2 (those we are less

certain of), and write model (1) accordingly as

y = X1β1 +X2β2 + u, (10)

so that X = (X1 : X2) and β = (β′

1, β
′

2)
′. Let k1 ≥ 0 be the dimension of β1 and

k2 ≥ 0 the dimension of β2, so that k = k1 + k2. Model selection takes place

over the auxiliary regressors only. Since each of the k2 auxiliary regressors can

either be included or not, we have 2k2 models to consider.

In addition to the regressors that are always in the model (X1) and those

that are sometimes in the model (X2), there are also regressors that are never

in the model (say X3), even though they are in the DGP. This is because the

modeler is ignorant about these regressors or has no access to the necessary

data. We disregard this situation for the moment, but return to it in Section 8.

We assume (at first) that θ and hence Ω is known. It is convenient to semi-

orthogonalize the regression model as follows. Let

M∗

1 := Ω−1 − Ω−1X1(X
′

1Ω
−1X1)

−1X ′

1Ω
−1, (11)

where we notice that the matrix Ω1/2M∗

1Ω
1/2 is idempotent. Let P be an

orthogonal matrix and Λ a diagonal matrix with positive diagonal elements

such that P ′X ′

2M
∗

1X2P = Λ. Next define the transformed auxiliary regressors

and the transformed auxiliary parameters as

X∗

2 := X2PΛ−1/2, β∗

2 := Λ1/2P ′β2. (12)

Then X∗

2β
∗

2 = X2β2, so that we can write (10) equivalently as

y = X1β1 +X∗

2β
∗

2 + u. (13)

The result of this transformation is that the new design matrix (X1 : X∗

2 ) is

‘semi-orthogonal’ in the sense that X∗

2
′M∗

1X
∗

2 = Ik2
and this has important

advantages that will become clear shortly.

3.1 Estimation in model Mi

Our strategy will be to estimate (β1, β
∗

2) rather than (β1, β2). Each of the k2
components of β∗

2 can either be included or not included in the model and this
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gives rise to 2k2 models. A specific model is identified through a k2 × (k2 − k2i)

selection matrix Si of full column-rank, where 0 ≤ k2i ≤ k2, so that S′

i =

(Ik2−k2i
: 0) or a column-permutation thereof. Our first interest is in the GLS

estimator of (β1, β
∗

2 ) in the i-th model, that is, in the GLS estimator of (β1, β
∗

2)

under the restriction S′

iβ
∗

2 = 0.

LetMi represent model (13) under the restriction S′

iβ
∗

2 = 0, and let β̂1(i) and

β̂∗

2(i) denote the GLS estimators of β1 and β∗

2 under Mi. Extending Danilov

and Magnus (2004a, Lemmas A1 and A2), the GLS estimators of β1 and β∗

2

under Mi may be written as (see also Magnus et al., 2011):

β̂1(i) = (X ′

1Ω
−1X1)

−1X ′

1Ω
−1y −Q∗Wib

∗

2, β̂∗

2(i) = Wib
∗

2, (14)

respectively, where

b∗2 := X∗

2
′M∗

1 y, Q∗ := (X ′

1Ω
−1X1)

−1X ′

1Ω
−1X∗

2 , Wi := Ik2
− SiS

′

i. (15)

Note that b∗2 is simply the GLS estimator of β∗

2 in the unrestricted model,

and that Wi is a diagonal k2 × k2 matrix with k2i ones and (k2 − k2i) zeros

on the diagonal. The j-th diagonal element of Wi equals zero if β∗

2j (the j-th

component of β∗

2) is restricted to zero, and equals one otherwise. If k2i = k2 then

Wi = Ik2
. The diagonality of Wi is a direct consequence of the semi-orthogonal

transformation.

The distributions of β̂1(i) and β̂∗

2(i) are then

β̂1(i) ∼ Nk1

(
β1 +Q∗SiS

′

iβ
∗

2 , (X
′

1Ω
−1X1)

−1 +Q∗WiQ
∗′
)
, (16)

β̂∗

2(i) ∼ Nk2
(Wiβ

∗

2 , Wi) , (17)

and cov(β̂1(i), β̂
∗

2(i)) = −Q∗Wi. The residual vector ei := y −X1β̂1(i) −X∗

2 β̂
∗

2(i)

is given by ei = ΩD∗

i y, where D
∗

i := M∗

1 −M∗

1X
∗

2WiX
∗

2
′M∗

1 and Ω1/2D∗

iΩ
1/2 is

a symmetric idempotent matrix of rank n− k1 − k2i. It follows that:

• all models that include the j-th column of X∗

2 as a regressor have the same

estimators of β∗

2j , namely b∗2j , irrespective of which other columns of X∗

2

are included;

• the estimators b∗21, b
∗

22, . . . , b
∗

2k2
are independent; and

• the residuals of the i-th model Mi depend on y only through M∗

1 y.

3.2 Prediction in model Mi

Next we wish to predict Nf (possibly future) values yf , based on values of the

regressors X1f (Nf × k1) and X2f (Nf × k2). Corresponding to X∗

2 we define

X∗

2f := X2fPΛ−1/2, so that

(
y

yf

)
=

(
X1 X∗

2

X1f X∗

2f

)(
β1

β∗

2

)
+

(
u

uf

)
, (18)
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where the errors (u, uf ) are distributed as in (3). From (5) we obtain

E(yf |y) = X1fβ1 +X∗

2fβ
∗

2 + CfΩ
−1(y −X1β1 −X∗

2β
∗

2 ), (19)

leading to the predictor in model Mi, using (14),

ŷ
(i)
f = X1f β̂1(i) +X∗

2f β̂
∗

2(i) + CfΩ
−1(y −X1β̂1(i) −X∗

2 β̂
∗

2(i))

= X1f (X
′

1Ω
−1X1)

−1X ′

1Ω
−1y + CfM

∗

1 y + ZfWib
∗

2, (20)

where

Zf := (X∗

2f −X1fQ
∗)− CfΩ

−1(X∗

2 −X1Q
∗). (21)

The prediction error PE(i) := ŷ
(i)
f − yf can now be written as

PE(i) = Z1f (X
′

1Ω
−1X1)

−1X ′

1Ω
−1u+ Zf (Wib

∗

2 − β∗

2)− vf , (22)

where

Z1f := X1f − CfΩ
−1X1, vf := uf − CfΩ

−1u. (23)

Since vf and u are uncorrelated, and X ′

1Ω
−1u and b∗2 are also uncorrelated, we

find that PE(i) is the sum of three independent random variables.

Theorem 1: The prediction error PE(i) follows a normal distribution with

E(PE(i)) = −Zf(I −Wi)β
∗

2

and

var(PE(i)) = Z1f(X
′

1Ω
−1X1)

−1Z ′

1f + ZfWiZ
′

f +Ωf − CfΩ
−1C′

f ,

and hence the mean squared prediction error MSPE(i) := MSE(PE(i)) is

MSPE(i) = Z1f (X
′

1Ω
−1X1)

−1Z ′

1f + Zf∆iZ
′

f +Ωf − CfΩ
−1C′

f ,

where

∆i := Wi + (I −Wi)β
∗

2β
∗

2
′(I −Wi).

Proof: The results follow directly from (22). ‖

The best model is therefore the one where the matrix ∆i is as ‘small’ as

possible. Since Wi is a diagonal matrix with only zeros and ones on the diag-

onal, ∆i is ‘small’ if the selected model Mi includes precisely those regressors

x∗

2j of X∗

2 whose corresponding parameter β∗

2j is larger than one in absolute

value. Since the β∗

2j are ‘theoretical’ t-ratios, this result corresponds exactly to

econometric intuition.
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4 The WALS predictor

The problem, of course, is that we don’t know which model to choose. Given

estimates β̂∗

2j of the k2 components β∗

2j of β
∗

2 , we could include the regressor x∗

2j

if |β̂∗

2j | > 1, and exclude it otherwise. This would lead to a pretest estimator with

well-established poor properties. These poor properties stem primarily from the

fact that the pretest estimator is ‘kinked’; it has a discontinuity at one. This

is not only mathematically undesirable but also intuitively: If β̂∗

2j = 0.99 we

exclude x∗

2j ; if β̂
∗

2j = 1.01 we include it. It would seem better to include x∗

2j

‘continuously’ in such a way that the higher is |β̂∗

2j |, the more of x∗

2j is included in

our model. This is precisely the idea behind model averaging. The additional

benefit of model averaging is that we develop the theory taking into account

both model uncertainty and parameter uncertainty. In other words, we think of

model selection and parameter estimation as one combined procedure, so that

the reported standard errors reflect both types of uncertainty.

Thus motivated, we define the WALS predictor of yf as

ŷf =

2k2∑

i=1

λiŷ
(i)
f , (24)

where the sum is taken over all 2k2 different models obtained by setting a subset

of the β∗

2 ’s equal to zero, and the λi’s are weight-functions satisfying certain

minimal regularity conditions, namely

λi ≥ 0,
2k2∑

i=1

λi = 1, λi = λi(M
∗

1 y). (25)

The first two conditions define the λi as proper weights, lying between zero and

one and adding up to one. The third condition says that each of the λi can only

depend on M∗

1 y. This is motivated by tho facts. First, we observe from (14)

that the estimators of (β1, β
∗

2 ) differ over models by a linear transformation of

M∗

1 y. Second, it follows from the discussion below (17) that the residual vector

in each model is also a function of M∗

1 y, and diagnostics typically are functions

of the residuals. Our assumption that the weights depend only on M∗

1 y is in

line with the commonly used model selection criteria, such as t- and F -tests but

also AIC and BIC, which also depend on y only through M∗

1 y. For connections

between our weights λi(M
∗

1 y) with model selection criteria and other weight

functions, see Liang et al. (2011).

The assumption λi = λi(M
∗

1 y) significantly alleviates the computational

burden, because the WALS procedure does not require 2k2 λi’s but only the

k2 diagonal elements of W :=
∑

i λiWi. The definition (24) now specializes as

follows.

Definition 1 (WALS predictor): The WALS predictor of yf is given by

ŷf := X1f (X
′

1Ω
−1X1)

−1X ′

1Ω
−1y + CfM

∗

1 y + Zf β̂
∗

2 ,
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where β̂∗

2 := Wb∗2.

Note that, while the Wi’s are non-random diagonal matrices, the matrix

W is random (but still diagonal) because it depends on the random λi’s. The

prediction error PE := ŷf − yf now takes the form

PE = Z1f (X
′

1Ω
−1X1)

−1X ′

1Ω
−1u+ Zf(β̂

∗

2 − β∗

2)− vf , (26)

and we present its moments in the following ‘equivalence’ theorem.

Theorem 2 (Equivalence theorem): If the weights λi satisfy condition (25),

then the WALS prediction error PE has the following expectation, variance and

mean squared error:

E(PE) = Zf E(β̂
∗

2 − β∗

2),

var(PE) = Z1f (X
′

1Ω
−1X1)

−1Z ′

1f + Zf var(β̂
∗

2 )Z
′

f +Ωf − CfΩ
−1C′

f ,

and hence

MSE(PE) = Z1f (X
′

1Ω
−1X1)

−1Z ′

1f + Zf MSE(β̂∗

2 )Z
′

f +Ωf − CfΩ
−1C′

f .

Proof: The key ingredient is that cov(M∗

1u,X
′

1Ω
−1u) and cov(u, vf ) are both

zero. In addition, the λi (and hence W ) depend only on M∗

1 y so that β̂∗

2 = Wb∗2
also depends only on M∗

1 y. Hence, the three random variables X ′

1Ω
−1u, β̂∗

2 , and

vf are all independent of each other. The results follow. ‖

The equivalence theorem tells us that the WALS predictor ŷf will be a

‘good’ predictor of yf in the mean squared error sense if and only if β̂∗

2 is a

‘good’ estimator of β∗

2 . That is, if we can find λi’s such that β̂∗

2 is an ‘optimal’

estimator of β∗

2 , then the same λi’s will provide an ‘optimal’ predictor of yf .

Next we obtain expressions for the bias and variance of the predictor it-

self, under the assumption that the diagonal elements of W depend only on

b∗2 = X∗

2
′M∗

1 y rather than only on M∗

1 y.

Theorem 3: If the diagonal elements wj of W depend only on b∗2, then the

WALS predictor ŷf has the following bias and variance:

E(ŷf −X1fβ1 −X2fβ2) = Zf E(β̂
∗

2 − β∗

2 )

and

var(ŷf ) = X1f (X
′

1Ω
−1X1)

−1X ′

1f + CfM
∗

1C
′

f + Zf var(β̂
∗

2 )Z
′

f

+ CfM
∗

1X
∗

2 cov(b
∗

2, β̂
∗

2)Z
′

f + Zf cov(β̂
∗

2 , b
∗

2)X
∗

2
′M∗

1C
′

f .

Under the stronger assumption that wj depends only on b∗2j , the k2×k2 matrices

var(β̂∗

2 ) and cov(b∗2, β̂
∗

2) are both diagonal.

Proof: The bias follows directly from Theorem 2. Noting that

cov(X ′

1Ω
−1y, M∗

1 y) = X ′

1M
∗

1 = 0, cov(X ′

1Ω
−1y, β̂∗

2 ) = 0,
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Definition 1 implies that

var(ŷf ) = X1f (X
′

1Ω
−1X1)

−1X ′

1f + CfM
∗

1C
′

f + Zf var(β̂
∗

2 )Z
′

f

+ Cf cov(M
∗

1 y, β̂
∗

2)Z
′

f + Zf cov(β̂
∗

2 ,M
∗

1 y)C
′

f .

Since Ω1/2M∗

1Ω
1/2 is idempotent, we can write

Ω1/2M∗

1Ω
1/2 = AA′, A′A = In−k1

.

Define y∗ := A′Ω−1/2y and B1 := A′Ω−1/2X∗

2 , so that y∗ ∼ N(B1β
∗

2 , In−k1
).

Since B′

1B1 = Ik2
there exists an (n − k1) × (n − k) matrix B2, such that

B := (B1 : B2) is orthogonal. This allows us to write

M∗

1 y = Ω−1/2A(B1B
′

1 +B2B
′

2)y
∗, β̂∗

2 = WB′

1y
∗,

so that

cov(M∗

1 y, β̂
∗

2) = cov(Ω−1/2AB1B
′

1y
∗,WB′

1y
∗) + cov(Ω−1/2AB2B

′

2y
∗,WB′

1y
∗)

= M∗

1X
∗

2 cov(b
∗

2, β̂
∗

2 ) + Ω−1/2AB2 cov(B
′

2y
∗,WB′

1y
∗)

= M∗

1X
∗

2 cov(b
∗

2, β̂
∗

2 ),

because B′

1y
∗ and B′

2y
∗ are independent, and the diagonal elements wj of W

depend only on X∗

2
′M∗

1 y = B′

1y
∗.

Finally, if wj depends only on b∗2j , then

cov(b∗2i, wjb
∗

2j) = 0, cov(wib
∗

2i, wjb
∗

2j) = 0 (i 6= j),

because b∗2i and b∗2j are independent. In that case both cov(b∗2, β̂
∗

2) and cov(β̂∗

2 , b
∗

2)

are diagonal. This completes the proof. ‖

Note that we write Theorem 3 in terms of cov(β̂∗

2 , b
∗

2) and not in terms of

cov(β̂∗

2 ,M
∗

1 y), which would have been much easier. The reason is that the latter

is difficult to compute, while the former is easier because it allows us to make

use of the relation between prior and posterior as we shall see in Section 6.

5 Computation of the WALS predictor based on

prior ignorance

The WALS predictor proposed in Definition 1 cannot be computed unless we

know W =
∑

i λiWi. Because of the semi-orthogonal transformation, we do

know that W is diagonal, say W = diag(w1, . . . , wk2
). There are 2k2 λi’s, but

there are only k2 wj ’s. These are functions of the λi’s, but we cannot identify

the λi’s from the wj ’s. This does not matter because we are not interested in

the λi’s as we are not interested in selecting the ‘best’ model. We are only

interested in the ‘best’ predictor.

11



The k2 components b∗2j of b∗2 are independent with var(b∗2j) = 1. Therefore,

if we choose wj to be a function of b∗2j only, then the components β̂∗

2j = wjb
∗

2j of

β̂∗

2 will also be independent, and our k2-dimensional problem reduces to k2 one-

dimensional problems. The one-dimensional problem is simply how to estimate

β∗

2j using only the information that b∗2j ∼ N(β∗

2j , 1).

This seemingly trivial question was addressed in Magnus (2002), who pro-

posed the ‘Laplace’ estimator. This estimator is obtained by combining the

normal likelihood with the Laplace prior,

b∗2j |β
∗

2j ∼ N(β∗

2j , 1), π(β∗

2j) = (c/2) exp(−c|β∗

2j|), (27)

where c is a positive constant. The Laplace estimator is now defined as the

resulting posterior expectation β̂∗

2j := E(β∗

2j |b
∗

2j). It is admissible, has bounded

risk, has good properties around |β∗

2j | = 1, and is near-optimal in terms of

minimax regret. It is also easily computable. The mean and variance of β∗

2j |b
∗

2j

are given in Theorem 1 of Magnus et al. (2010). The mean is

β̂∗

2j = E(β∗

2j | b
∗

2j) = b∗2j − c · h(b∗2j) (28)

with

h(x) :=
e−cxΦ(x− c)− ecxΦ(−x− c)

e−cxΦ(x− c) + ecxΦ(−x− c)
, (29)

and the variance vj := var(β∗

2j |b
∗

2j) is

vj = v(b∗2j) = 1 + c2(1− h2(b∗2j))−
c(1 + h(b∗2j))φ(b

∗

2j − c)

Φ(b∗2j − c)
, (30)

where φ and Φ denote the density function and the cumulative distribution

function of the standard-normal distribution, respectively.

The weights wj are defined implicitly by β̂∗

2j = wjb
∗

2j and are thus given by

wj = w(b∗2j) = 1−
c · h(b∗2j)

b∗2j
. (31)

Each wj satisfies w(−b∗2j) = w(b∗2j) and increases monotonically between w(0)

and w(∞) = 1. Hence, β̂∗

2j is a shrinkage estimator, and we have

w(0)|b∗2j | < |β̂∗

2j | < |b∗2j |. (32)

In particular, when c = log 2, we find that w(0) = 0.5896 which defines the

maximum allowable shrinkage.

The hyperparameter c is chosen as c = log 2, because this implies

Pr(β∗

2j > 0) = Pr(β∗

2j < 0), Pr(|β∗

2j | > 1) = Pr(|β∗

2j | < 1). (33)

What this means is that we assume a priori ignorance about whether β∗

2j is

positive or negative, and also about whether |β∗

2j | is larger or smaller than one.

These seem natural properties for a prior in our context, because we don’t know

12



a priori whether the β∗

2 coefficients are positive or negative, and we don’t know

either whether adding a specific column of X∗

2 to the model will increase or

decrease the mean squared error of the predictors. Such a prior thus captures

prior ignorance in a natural way. Given the choice of the weights wj and hence

of the estimator β̂∗

2 , the WALS predictor ŷf can be computed.

6 Moments of the WALS predictor

The moments of the WALS predictor are given in Theorem 3, but the expres-

sions provided there depend on unknown quantities. Under the assumption that

the weights wj are specified as in (31), and hence depend on b∗2j only, we esti-

mate these unknown quantities as follows.

Theorem 4: If the diagonal elements wj of W depend only on b∗2j as spec-

ified in (31), then the expected bias of the WALS predictor ŷf , based on prior

densities π(β∗

2j), is zero:

E (E(ŷf −X1fβ1 −X2fβ2)|β
∗

2 ) = 0.

Proof: According to Theorem 3, the prediction bias, conditional on β∗

2 , is

E(ŷf −X1fβ1 −X∗

2fβ
∗

2 |β
∗

2) = Zf E(β̂
∗

2 − β∗

2 |β
∗

2).

Further,

E(β̂∗

2j − β∗

2j) = E
(
E(β̂∗

2j − β∗

2j |β
∗

2j)
)

= E
(
E(b∗2j − β∗

2j |β
∗

2j)
)
− c · E

(
E(h(b∗2j)|β

∗

2j)
)
= 0,

because E(h(b∗2j)|β
∗

2j) is antisymmetric in β∗

2j and π(β∗

2j) is symmetric in β∗

2j .

Hence the expected bias of ŷf vanishes. ‖

The variance of ŷf is given in Theorem 3. Under the assumption that the

weights wj depend only on b∗2j , the matrices var(β̂∗

2 ) and cov(b∗2, β̂
∗

2 ) are both

diagonal. Hence it suffices to discuss the estimation of var(β̂∗

2j) and cov(b∗2j , β̂
∗

2j).

The variance in the posterior distribution of β∗

2j |b
∗

2j is given by vj in (30), and

hence provides the obvious estimate of var(β̂∗

2j). It is less obvious how to find

an appropriate estimate of cov(b∗2j , β̂
∗

2j). We propose to use the weight as the

estimator of the covariance, i.e.

wj = ĉov(b∗2j , β̂
∗

2j) = ĉov(b∗2j , w(b
∗

2j)b
∗

2j). (34)

Since var(b∗2j) = 1, this would be a perfect estimate if wj were a constant. Now,

wj depends on b∗2j and is therefore not a constant. Still, its variation is very

small compared to the variation in b∗2j . The correlation associated with the

covariance is

ĉorr(b∗2j , β̂
∗

2j) =
ĉov(b∗2j , β̂

∗

2j)√
v̂ar(b∗2j)v̂ar(β̂

∗

2j)
=

w(b∗2j)√
v(b∗2j)

, (35)
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since we estimate var(β̂∗

2j) by vj = v(b∗2j). The estimated correlation is therefore

always positive (in fact, larger than 0.7452) and smaller than one, such that

when b∗2j approaches ±∞ the correlation approaches one.

We conclude that a suitable estimator for the variance of the WALS predictor

is given by

v̂ar(ŷf ) = X1f (X
′

1Ω
−1X1)

−1X ′

1f + CfM
∗

1C
′

f + ZfV Z ′

f

+ CfM
∗

1X
∗

2WZ ′

f + ZfWX∗

2
′M∗

1C
′

f , (36)

where V and W are diagonal k2 × k2 matrices whose j-th diagonal elements vj
and wj are given in (30) and (31), respectively. Having thus obtained estimators

for all unknown quantities, the prediction variance can be computed.

A few words on the impact and limitations of the normality assumption are

in order. Our derivations are based on the normality of the error term, and this

allows us to incorporate correlations between contemporary and future errors,

and obtain the conditional expectation of future observations given contempo-

rary observations, as in equations (4) and (5). These conditional expectations

are our starting point. Without the normality assumption, we can still ob-

tain the conditional expectation E(yf |y) (of course in a different form), but the

WALS procedure would not apply directly, because it depends on the validity

of the equivalence theorem. At the moment, we don’t yet have a version of the

equivalence theorem under non-normality.

7 Unknown variance matrix

We have thus far assumed that Ω and Cf are known, whereas in practice they

are of course unknown. If the structure of the variance matrix is known, we

can estimate Ω and Cf once we have an estimate of unknown parameter θ. The

parameter θ can be estimated based on the unrestricted model by minimizing

ϕ(θ) := log |Ω|+ y′(Ω−1 − Ω−1X(X ′Ω−1X)−1X ′Ω−1)y (37)

with respect to θ.

This leads to the maximum likelihood estimator θ̂ of θ, and hence to the

estimators Ω̂ = Ω(θ̂) and Ĉf = Cf (θ̂). Note that the gradient of ϕ is the m× 1

vector whose i-th component is given by

∂ϕ(θ)

∂θi
= tr

(
Ω−1 ∂Ω

∂θi

)
− (M∗y)′

∂Ω

∂θi
(M∗y), (38)

where

M∗ = M∗

1 (Ω−X∗

2X
∗

2
′)M∗

1 . (39)

Therefore, θ̂ depends on y only through M∗

1 y and the same holds for Ω̂ and Ĉf .

Replacing the unknown variance matrix with its estimator can have an effect

on the property of the WALS predictor. However, Danilov (2005) showed that

plugging in the unknown variance has a marginal effect on the WALS estima-

tor, at least in terms of the risk. We shall study the effect of plugging in an

inconsistent variance estimator in the simulation.
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8 Simulation setup

Sections 2–7 contain the theoretical framework. Our next task is to evaluate the

performance of the WALS predictor in a number of common situations and in

comparison with other often-used predictors. In the current section we describe

the setup of our simulation experiment. The simulation results are presented in

Section 9. Many extensions of the benchmark setup were considered and some

of these are summarized in Sections 10 and 11.

8.1 Seven methods

In the simulations we compare the performance of the WALS predictor to six

commonly-used methods: unrestricted maximum likelihood (ML), two pretest-

ing methods (PT), ridge regression (Ridge), least absolute shrinkage and selec-

tion operator (Lasso), and Mallows model averaging (MMA). We briefly describe

each method below.

Unrestricted maximum likelihood simply estimates the unrestricted model

(with all auxiliary regressors). There is no model selection here, and hence no

noise associated with the model selection procedure. On the other hand, the

noise associated with the estimation procedure will be large because of the large

number of parameters.

Pretest estimation is a long-standing practice in applied econometrics, per-

haps because pretest estimators are ‘logical outcomes of the increased diagnostic

testing of assumptions advocated in many econometric circles’ (Poirier, 1995,

p. 522). Pretest estimators and predictors do not follow textbook OLS or GLS

properties, because the reported predictor is biased and its variance is only cor-

rect conditional on the selected model. One would expect the unconditional

(‘true’) variance to be larger, because of the model selection noise. Giles and

Giles (1993) provide a comprehensive review of the pretest literature. In pretest

prediction one first selects the model based on diagnostic testing, and then pre-

dicts under the selected model. The choice of critical values of the pretest has

received much attention (Toyoda and Wallace, 1976; Ohtani and Toyoda, 1980;

Wan and Zou, 2003). Here we use the stepwisefit routine in Matlab (PTsw),

one of the most popular pretest methods. This routine begins with a forward

selection procedure based on an initial model, then employs backward selection

to remove variables. The steps are repeated until no additions or deletions of

variables are indicated. We treat the model that includes only the focus re-

gressors as the initial model and let the routine select the auxiliary regressors

according to statistical significance. We choose the significance level for adding

a variable to be 0.05 and for removing a variable to be 0.10. We also consider

another model selection procedure which tests β∗

2j and selects the X∗

2j whose

|β̂∗

2j | are larger than 1. This is a one-step pretesting method, and we denote it

as PTos.

Ridge regression (Hoerl and Kennard, 1970) is a common shrinkage tech-

nique, originally designed to address multicollinearity. Since the focus param-
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eters are always in the model, we only penalize the auxiliary parameters. The

ridge estimator is then obtained by minimizing

φ(β1, β2) = (y −X1β1 −X2β2)
′(y −X1β1 −X2β2) + κβ′

2β2. (40)

Letting

E1 =

(
Ik1

0k1×k2

0k2×k1
0k2×k2

)
, E2 =

(
0k1×k1

0k1×k2

0k2×k1
Ik2

)
, (41)

the solution can be written as

β̂(κ) = (X ′X + κE2)
−1X ′y, (42)

where κ is the tuning parameter. Alternatively we obtain the ridge estimator in a

Bayesian framework as the mean in the posterior distribution of β|(X ′X)−1X ′y

by combining the data density (X ′X)−1X ′y|β ∼ N(β, σ2(X ′X)−1) with the

partially informative prior β/σ ∼ N(0, (1/ǫ)E1 + (1/κ)E2) and letting ǫ → 0.

Following Golub et al. (1979), we choose the tuning parameter κ by minimizing

the generalized cross validation criterion

GCV(κ) =
(y − Ξ(κ)y)′(y − Ξ(κ)y)

(N − tr Ξ(κ))2
, Ξ(κ) = X (X ′X + κE2)

−1
X ′. (43)

As an alternative to ridge regression we also consider the predictor using the

Lasso. The Lasso shrinks some coefficients and sets others equal to zero; it can

be thought of as a combination of subset selection and ridge regression.

Finally, Mallows model averaging, proposed by Hansen (2007), averages over

estimators using weights obtained by minimizing the Mallows criterion

C(λ) = (y − P (λ)y)′(y − P (λ)y) + 2σ2 trP (λ), (44)

where λ = (λ1, . . . , λ2k2 ), P (λ) =
∑

i λiX
(i)(X(i)′X(i))−1X(i)′, and X(i) is the

regressor matrix in model Mi. Note that we do not assume an explicit ordering

of the regressors, as Hansen does. An explicit ordering has the computational

advantage that it reduces the number of weights from 2k2 to k2, but it is typi-

cally not practical in applications. (WALS also reduces the computational bur-

den from 2k2 to k2, but through a semi-orthogonalization which does not require

further assumptions.) When the submodels are strictly nested, Hansen (2007)

proved that the MMA estimator is asymptotically optimal in a given class of

model averaging estimators. Wan et al. (2010) extended the optimality to non-

nested models, and showed the superiority of this method to smoothed AIC,

weigthed BIC, Bates-Granger combination, among others; see Hansen (2008)

for details. Further research may compare WALS with more recent model aver-

aging techniques, such as jackknife model averaging (Hansen and Racine, 2012),

optimal weighting (Liang et al., 2011), and other methods.

All predictors explicitly account for possible correlation in the random dis-

turbances. In particular, the WALS predictor is obtained using Definition 1,

and the predictors of the other four predictors are all computed from

ŷf = Xf β̂ + CfΩ
−1(y −Xβ̂), (45)
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where β̂ depends on the chosen method. For ML (unrestricted model, no model

selection), the predictor is linear in y and the associated variance is easily com-

puted. For PTsw and Ridge, the predictor is not linear in y, but the reported

variance is calculated as if the predictor were linear in y, following common

practice. The variance for WALS is estimated from (36) while the variance for

MMA cannot be computed.

8.2 Data-generation process

We generate the data in three steps. First, we design the regressor matrix

X = (X1 : X2 : X3), where X1 and X2 contain the focus and auxiliary variables,

while X3 contains the regressors that are omitted by the researcher (from every

model) either because of ignorance or because of data limitations. The DGP

and the largest (unrestricted) model are therefore not necessarily the same in

the simulations. This is important because it brings us one step closer to econo-

metric practice. In the benchmark DGP we consider six regressors with k1 = 2,

k2 = 3, and k3 = 1, such that

X1 = (x1, x2), X2 = (x3, x4, x5) X3 = (x6), (46)

where x1 is the intercept. Since k2 = 3 we have 23 = 8 possible models. In

the benchmark, x2 is generated by independent standard-normal distributions,

while X2 and X3 are generated by multivariate normal distributions with cor-

relation 0.3. All regressors are treated as fixed, so that each replication uses the

same realization of the regressors once they have been generated. In Section 11

we shall consider extensions where we have a large number of regressors and the

regressors are autocorrelated or non-normally distributed.

Next, we simulate the parameters βj (j = 1, . . . , 6) corresponding to regres-

sors x1, . . . , x6. For the auxiliary and omitted regressors x3, . . . , x6 we set these

parameters indirectly by controlling the ‘theoretical’ t-ratios, as follows. If we

estimate the focus variables and just one auxiliary variable xj , we obtain an

estimated coefficient β̂j with variance var(β̂j) = (x′

jM
∗

1xj)
−1. This implies a

t-ratio t̂j = β̂j

√
x′

jM
∗

1xj . The ‘theoretical’ t-ratio is now defined as

tj = βj

√
x′

jM
∗

1xj (j = 3, . . . , 6). (47)

The values of the tj are important (especially whether |tj | > 1 or |tj | < 1),

because they determine whether adding an auxiliary regressor to the model

will increase or decrease the root mean squared prediction error (the square

root of the mean squared prediction error); see Theorem 1. We consider five

combinations, as follows:
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Auxiliary Omitted

T t3 t4 t5 t6
T1 1.2 0.9 1.1 0.0

T2 1.2 1.7 0.7 0.9

T3 1.2 0.9 1.0 2.5

T4 2.0 2.5 2.7 0.0

T5 0.4 0.2 0.5 0.0

Given xj and tj , we then obtain the parameters βj (j = 3, . . . , 6). Three of

the five cases (T1, T4, T5) have no omitted variables. In T1 the t-ratios of the

auxiliary variables are close to 1, in T4 the t-ratios are large, and in T5 they are

small. The other two cases (T2, T3) have an omitted variable. The value of t6
is either close to one (T2) or large (T3).

Regarding the focus parameters we let β1 = β2 = ν
√∑6

j=3 β
2
j for three

values of ν: 1, 2, and 3. Since the prediction performance is hardly affected by

this choice, we shall report for ν = 2 only.

Finally, we generate the error terms, based on (3), from a normal distribution

with mean zero and variance Ωall. We consider six specifications of Ωall: two for

homoskedasticity, two for heteroskedasticity, and two for autocorrelation. More

precisely,

• homoskedasticity: Ωall = σ2In+nf
with σ2 ∈ {0.25, 1.00};

• heteroskedasticity: Ωall = diag [exp(τx2)] with τ ∈ {0.2, 0.7};

• autocorrelation: AR(1) with σ2 = 1.0 and ρ ∈ {0.3, 0.7}.

8.3 Comparison of prediction methods

We evaluate the seven methods by comparing the predictors and the estimated

variances of the predictors. To compare the predictors produced by the seven

methods, we consider the deviation between the predictor ŷf and the true value

yf . A direct comparison is, however, misleading because there is a component

common to all procedures. Hence we compute a modified version of the root

mean squared prediction error,
√√√√ 1

R

R∑

r=1

(
ŷ
(r)
f − y

(r)
f + (uf − CfΩ−1u)

)
′
(
ŷ
(r)
f − y

(r)
f + (uf − CfΩ−1u)

)
(48)

where ŷ
(r)
f and y

(r)
f are the predictor and the true value in the r-th replication.

We follow Hansen (2008) and subtract uf −CfΩ
−1u from the prediction error,

because it is common across prediction methods and independent of u, hence

independent of β̂ − β.

To compare the prediction variances is more subtle. We could just compare

the magnitudes of

1

R

R∑

r=1

var(ŷ
(r)
f ), (49)
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which would tell us whether one method reports more precise predictions than

another. This is of interest, but more important than whether the reported

prediction variance is small is whether the prediction variance is correct. It is

easy to find predictors with small variances, but this does not make them good

predictors.

Thus we wish to determine how close the estimated variance is to the ‘true’

variance, and this is measured by the RMSE of the prediction variance,
√√√√ 1

R

R∑

r=1

(
var(ŷ

(r)
f )− VT

)2
, (50)

where VT denotes the ‘true’ variance, that is, the actual variance of the pre-

dictor. Since different methods give different predictors, the ‘true’ variance of

the predictor varies across methods. We estimate VT by obtaining Rv = 100

predictors from the replications, and then computing the sample variance of

these predictors,

VT :=
1

Rv − 1

Rv∑

r=1

(
ŷ
(r)
f −

1

Rv

Rv∑

r=1

ŷ
(r)
f

)2
. (51)

We consider training samples of size N = 100 and N = 300, and a prediction

sample of size Nf = 10. The simulation results are obtained by computing

averages across R = 3000 draws.

9 Simulation results: The benchmark

Before we compare the finite-sample properties of the seven methods, we first ex-

amine briefly the asymptotic behavior of the WALS predictor. Figure 1 presents

Figure 1: Empirical moments of the WALS predictor as a function of sample

size
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three moments of the WALS predictor (computed based on the empirical dis-

tribution) as the number of observations increases to 1000. The figure shows
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that, as the number of observations increases, the standard deviation decreases,

suggesting consistency of the WALS predictor. However, the skewness and kur-

tosis do not seem to converge to zero, which suggests that the WALS predictor

is asymptotically not normally distributed, probably due to the random weights

employed in WALS. In our set-up we cannot verify Leeb and Pötscher’s (2006)

critique that the distribution estimate of a post-model-selection estimator is not

uniformly consistent.

We now turn to the finite sample behavior, which is our motivating inter-

est. We compare the predictors by considering two sample sizes (N = 100,

N = 300), five sets of parameter values (T1, . . . T5), six specifications of Ωall,

and seven methods. Each method is presented relative to ML, that is, we present

the RMSE of each method divided by the RMSE of ML. An entry smaller than

one thus indicates a superior performance relative to the ML method.

TABLE 1

The RMSEs of the predictors are presented in Table 1. We omit the results

of PTos and Lasso in Table 1 (available upon request) since the performance of

PTos is highly similar to PTsw, and the Lasso predictor is not as good as ridge

in most cases except in T5 with medium heteroskedastic errors (τ = 0.7) and

medium autocorrelated errors (ρ = 0.7). We see that WALS comes out best in

42 out of 60 cases (70%), followed by Ridge (15%), and ML (10%). There are

three cases (5%) where Lasso outperforms WALS and Ridge: Heteroskedasticity

T5 (N = 300, τ = 0, 7), autocorrelation T5 (N = 100, ρ = 0, 7), and autocorrela-

tion T5 (N = 300, ρ = 0, 7). The pretest and MMA predictors never dominate.

The dominance of WALS occurs for each of the specifications of Ωall, though

slightly less in the autocorrelation case than in the homo- and heteroskedastic

cases. One reason why WALS is superior over MMA is that WALS makes use

of the information in the error structure while MMA does not.

In T1 and T2 WALS dominates in all twelve cases. This shows that WALS

performs well when the t-ratios of the auxiliary variables are close to one, even

when the model possibly omits one variable with a t-ratio close to one. If the

omitted variable has a stronger impact on the dependent variable, as in T3,

WALS still works best in 8/12 cases followed by ML (4/12). This suggests

that omitting important regressors may affect the prediction ability of WALS

under non-iid errors, and that ML using the full model without shrinking can

outperform the shrinkage estimators in some cases. We shall investigate this

point further in Section 11.

When the t-ratios of the auxiliary variables are much larger than one, as

in T4, then WALS is still the best, while ML also performs well in some of

these cases. This makes sense, because model uncertainty plays a smaller role

here. In the opposite case where the t-ratios of the auxiliary variables are much

smaller than one, as in T5, WALS is not the best. Here the Ridge or Lasso

predictors dominate, and ML is always the worst. Here too there is little model
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uncertainty. The unrestricted model (ML) is not appropriate, while shrinkage

towards the restricted estimator (with only the focus regressors) makes sense,

and this is what Ridge and Lasso do.

TABLE 2

Before we study the prediction variance, we examine the performance of the

WALS predictor when the structure of the error variance is misspecified. In this

case the estimated variance is incorrect, which will have an effect on the prop-

erties of the predictors. The question of interest is whether this effect is large or

small. We focus on two common types of misspecification: Misspecifying het-

eroskedasticity as homoskedasticity and ignoring autocorrelation. The results

are given in Table 2. Other types of misspecification are also examined and the

results are similar. We see that WALS is still the best in 25/40 cases (63%).

The good performance of WALS shows that the inconsistency of the variance

estimate hardly affects the relative prediction performance of WALS compared

to the alternative predictors under consideration. We also note that the number

of cases where Ridge or Lasso performs best increases under misspecification,

which suggests robustness of Ridge and Lasso with respect to error variance

misspecification. On the other hand, ML performs well in only one case, con-

firming that ML is sensitive to misspecification.

FIGURE 2

We next compare the performance of the prediction variance. We first con-

sider the magnitude of the estimated variance itself, then we ask how close the

estimated variance is to the ‘true’ variance. The MMA method is not included

in this comparison because there is no procedure known to us to compute this

variance. In the boxplots of Figure 2, the central mark is the median, the edges

of each box indicate the 25-th and 75-th percentiles, the whiskers extend to

the most extreme data points not considered outliers, and outliers are plotted

individually.

We consider six representative cases. Judging by the median of the estimated

variance, ML has the largest variance, followed by WALS, while the variance

of the Ridge and PTsw predictors are both smaller than WALS. This is in ac-

cordance with intuition, because ML includes all regressors, while pretesting

and ridge are based on the selected model or the selected parameter, thus ig-

noring variation caused by the selection procedure. The WALS predictor has a

relatively large variance (but still smaller than ML), because it does take the

uncertainty in the selection procedure into account.

We note that the estimated variances for WALS and ML are more concen-

trated on their median values than those of Ridge and PTsw, and that the

distributions of the latter two methods are also characterized by a strong asym-

metry. The difference between the four variance estimates is relatively small
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when there is little model uncertainty (T4), and more pronounced when model

uncertainty is large (T1).

TABLES 3 and 4

As discussed before, a variance estimate is a good estimate, not when it is

small, but when it provides the correct information about the precision of the

predictor. If this precision happens to be low, then we need to provide a high

value for the variance estimate. Table 3 gives the RMSE of the estimated pre-

diction variance, as given in (50), again relative to ML. On the left side of the

table (where the parameters σ2, τ , and ρ are relatively small), the RMSE ratios

(relative to ML) are, on average, 1.10 for WALS, 2.43 for Ridge, and 10.98 for

PTsw . On the right side (where the parameter values are larger, corresponding

to more uncertainty), the RMSE ratios are 1.03 for WALS, 1.91 for Ridge, and

12.72 for PTsw . The variance of PTos (not reported but available upon request)

has a smaller RMSE than that of PTsw, but still much larger than WALS. The

main conclusion from the table is therefore that ML and WALS provide the best

estimates of the prediction variance, while Ridge, PTos, and especially PTsw

generally report a variance which is misleadingly small. While WALS provides

a much better estimate of the forecast than ML, the variance of the forecast is

slightly more accurately estimated in ML than in WALS.

ML performs particularly well when N is large (because of the asymptotic

behavior of ML estimates and predictions) and when the variance parameters

are small. The relative performance of the WALS prediction variance estimates

is improved by increasing the variance of the error terms. This suggests that

prediction using WALS is especially attractive in the presence of model uncer-

tainty. WALS performs even better (relative to other methods) when we allow

for misspecification in the variance structure, as shown in Table 4. WALS pro-

duces the smallest RMSE in 36/40 cases (90%) while ML is the best in the

remaining 4/40 cases (10%). This shows again that WALS is more robust than

ML with respect to variance misspecification.

In the benchmark setup, where we have assumed deterministic regressors and

coefficients, there is not much model uncertainty. If we allow more model un-

certainty, for example by introducing random regressors or random coefficients

or by increasing the variance of the errors, then the previous results suggest

that the WALS estimates, which incorporate the model uncertainty, are more

accurate than ML. The impact of model uncertainty is clearly an important

issue and we analyze it in more depth in the next section.

10 Simulation results: More uncertainty

In this section we extend the benchmark setup by introducing additional ran-

domness in the model. This is achieved by allowing for random regressors or

random coefficients or by increasing the variance of errors.

22



10.1 Random regressors

We first consider the model with random but exogenous regressors. This is a

common extension in simulation designs, and particularly useful in applications

where one wishes to model dynamic economic behavior. The only difference

with the benchmark is that we generate a new set of X ’s from N(0, σ2
x) in every

replication, so that each realization of the y-series involves a new realization of

the X-series. (The introduction of σ2
x is unimportant, because the RMSE is

invariant to its value.) The generation of X is independent of the errors.

Allowing the regressors to be random increases the RMSE of the forecast in

each method (tables omitted). The relative performance of the seven predictors

is similar to the benchmark case. In particular, the WALS predictor has the

lowest RMSE in T1, T2, and T3, about 6% lower than the RMSE of the ML

predictor. In case T5, the ridge predictor has the lowest RMSE under all error

structures, around 14% lower than the ML predictor. In contrast to the bench-

mark results, allowing random regressors improves the relative performance of

WALS over ML in T4, because more randomness decreases the importance of

the auxiliary variables.

TABLE 5

The main difference between the random regressor model and the benchmark

model is in the prediction variance, and we report its RMSE in Table 5. WALS

now produces the prediction variance with the smallest RMSE in all cases, in-

cluding T4 and T5. The results are not affected by the misspecification of the

error variance structure. This remarkable performance of WALS is due to the

fact that randomness in the regressors raises model uncertainty, which in turn

increases the variation of the predictor, that is, the true variance. The prediction

variance of WALS explicitly incorporates such model uncertainty, in contrast to

pretesting, ridge regression, and ML.

10.2 Random coefficients

Next we consider the situation where the coefficients of the explanatory variables

are subject to random variation, that is,

yt =
6∑

j=1

xtj(βj + vtj) + ut (t = 1, 2, . . . , N), (52)

where the vtj ’s are independent unobserved random disturbances, distributed as

N(0, σ2
v). Such models date back to Rubin (1950), Hildreth and Houck (1968),

Swamy (1970), Froehlich (1973), and others, who discussed parameter esti-

mation and provided empirical applications. Prediction in random coefficient

models is studied, inter alia, in Bondeson (1990) and Beran (1995). We can

23



rewrite (52) as

yt =

6∑

j=1

xtjβj + ζt, ζt =

6∑

j=1

xtjvtj + ut (53)

where ζt is normally distributed with mean zero and variance σ2
ζ = σ2

u +

σ2
v

∑
j x

2
tj . This shows that introducing variation in the coefficients increases

the variance of the errors. We assume that the researcher is ignorant of the

random coefficients and misspecifies them as fixed. Hence the model is the

benchmark model, but the DGP has changed. How do the predictors respond

to this situation?

Regarding the accuracy of the predictors, we find similar results as in the

random regressor model. The WALS predictor has the lowest RMSE in cases

T1–T4, while the ridge predictor is the best under T5. This demonstrates good

performance of the WALS predictor when the t-ratios of the auxiliary variables

are close to one, even when the coefficients are misspecified.

FIGURE 3

The accuracy of the estimated prediction variance is shown in Figure 3 as a

function of σ2
v . Increasing σ2

v raises the model uncertainty as well as the degree

of misspecification, thus lowering the accuracy of all predictions. The variance

estimates obtained from pretesting have a much larger RMSE than those from

other methods, and they are also more volatile. Ridge regression generally pro-

duces somewhat better variance estimates. Most accurate are ML and WALS,

and their variance accuracy is close when σ2
v is small. When σ2

v = 0 (the bench-

mark), ML has smaller RMSE than WALS, but as σ2
v increases, the RMSE of

WALS increases slower than the RMSE of ML, and when σ2
v > 0.03 the ac-

curacy of WALS variance estimates is higher than ML. These results confirm

that WALS behaves well in the presence of a large degree of model uncertainty.

Viewed differently, WALS is more robust than pretesting, ridge, and ML.

10.3 Increase in the variance of errors

Finally, we consider an increase in the variance of the errors by changing a pa-

rameter in Ωall. We only consider the homoskedastic and the heteroskedastic

cases. Under homoskedasticity we can increase the error variance by increasing

σ2; under heteroskedasticity case by increasing τ .

FIGURE 4

Figure 4 shows how the RMSE of the prediction variance changes as the param-

eters σ2 and τ increase. In both cases, WALS and ML outperform Ridge and,

in particular, PTsw. When the error variance is small, the prediction variances

produced by WALS and ML show similar accuracy. But as the error variance

increases, the WALS prediction variance has small RMSE than ML.
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Note that increasing the error variance affects the RMSE of the prediction

variance in different ways: it increases the RMSE in the homoskedastic case but

reduces the RMSE in the heteroskedastic case. This is because in the design of

the heteroskedastic variance, Ωall = exp(τx2) is a function of x2. Increasing τ

leads to a smaller estimated coefficient β̂2 since the estimation process cannot

distinguish between increasing the error variance from increasing the variation

in x2.

In summary, more model uncertainty leads to a better performance of WALS

relative to the other methods.

11 Simulation results: More regressors

In Sections 9 and 10 we assumed two focus regressors, three auxiliary regressors,

and one omitted regressor. In practical applications the number of regressors

is likely to be larger. In this section we extend the benchmark framework by

assuming k2 = 12 auxiliary regressors and k3 = 3 omitted regressors, while

keeping the same number k1 = 2 of focus regressors. The large number of

auxiliary regressors will increase the model uncertainty, because we now have

212 = 4096 different models to consider compared to 23 = 8 in the benchmark.

When introducing new variables we have to specify the ‘theoretical’ t-ratios

which are used to compute the values of the β-parameters. We consider four

combinations, as follows:

Auxiliary Omitted

T t3–t14 t15–t17
TL1 1.2, 0.9, 1.0, 1.3, 1.2, 1.5, 1.6, 1.2, 1.1, 0.8, 1.5, 1.4 0.0, 0.0, 0.0

TL2 1.2, 0.9, 1.0, 1.3, 1.2, 1.5, 1.6, 1.2, 1.1, 0.8, 1.5, 1.4 2.4, 2.8, 2.0

TL3 1.2, 0.9, 1.0, 2.3, 2.2, 2.5, 2.6, 2.1, 2.0, 0.5, 2.5, 1.4 0.0, 0.0, 0.0

TL4 1.2, 0.9, 1.0, 0.7, 1.2, 0.5, 0.6, 2.2, 0.3, 0.8, 0.5, 1.2 0.0, 0.0, 0.0

In TL1 all auxiliary variables have t-ratios close to one and there are no omitted

variables. In TL2 we have the same t-ratios for the auxiliary variables but now

there are also omitted variables. In TL3 many of the auxiliary variables have

‘large’ t-ratios, while in TL4 many of the t-ratios are ‘small’. Only TL2 has

omitted variables and they are all important. We combine this larger data set

with the benchmark setup, random regressor DGP, and random coefficient DGP,

again under each of the three error structures. We compare WALS, Ridge, and

PTsw with ML. We do not compute MMA because the computational burden

is too high when k2 is large.

TABLE 6

Some representative simulation results are presented in Table 6. Regarding

the predictor, we see that WALS and Ridge perform best, better than ML and
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much better than PTsw. The number of cases where Ridge performs best is

slightly larger than the number of cases where WALS is superior. Regarding

the prediction variance, WALS performs best, followed by Ridge and ML, and

much better than PTsw.

We briefly consider two other extensions, both analyzed in the context of the

small data set: autocorrelated regressors and non-normality. Autocorrelation

is introduced through an AR(1) process, while the non-normal regressors are

obtained from a Student distribution with five degrees of freedom. We experi-

ment (separately) with these two extensions in the benchmark model and also

in models with more uncertainty. The simulation results are largely similar to

the case with normal and uncorrelated regressors and therefore not reported.

In particular, the WALS predictor is the most accurate when t-ratios are close

to one, and the WALS prediction variance is particularly reliable when there is

additional uncertainty.

12 Conclusion

This paper has introduced a new method of prediction averaging using weighted-

average least squares (WALS). We have argued that pretesting—the currently

dominant prediction method—is dangerous, because it ignores the noise asso-

ciated with model selection. Indeed, our simulation results demonstrate that

pretesting performs very badly. Model averaging is an attractive method in

that it allows us to combine model selection and prediction into one procedure.

Within the model averaging methods we proposed the WALS predictor and also

an estimate for its variance. Our predictor explicitly allows for correlation in

the errors.

We have compared the WALS predictor with four competing predictors (un-

restricted ML, pretesting, ridge regression, Mallows model averaging) in a wide

range of simulation experiments, where we considered not only the accuracy of

the predictor (measured by the root mean squared prediction error), but also the

accuracy of the prediction variance. The WALS predictor generally produces

the lowest mean squared error. The estimated variance of the WALS predictor,

while typically larger than the variance of the pretesting and ridge predictors,

has smaller RMSE, and when model uncertainty increases the dominance of

WALS becomes more pronounced. These results, together with the fact that

the WALS predictor is easy to compute, suggest that the WALS predictor is a

serious candidate in economic prediction and forecasting.
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Table 1: RMSE of predictor relative to ML, benchmark model

N T WALS PTsw Ridge MMA WALS PTsw Ridge MMA

Homoskedasticity

σ2 = 0.25 σ2 = 1.00

T1 0.8644 1.0638 0.8456 0.9028 0.8686 1.1126 0.8818 0.9385

T2 0.9092 1.0690 0.9332 0.9355 0.8472 1.1096 0.8555 0.9270

100 T3 0.9998 1.1915 1.0418 1.0757 0.9272 1.0781 0.9541 0.9746

T4 0.9280 1.2600 0.9474 1.0889 0.8561 1.2851 0.9015 1.0625

T5 0.8203 0.8714 0.7597 0.8056 0.8440 0.8936 0.7833 0.8284

T1 0.9007 1.1188 0.9627 0.9782 0.8931 1.0796 0.9016 0.9433

T2 0.9226 1.1182 0.9394 0.9963 0.8821 1.1189 0.9221 0.9753

300 T3 0.9700 1.1603 0.9862 1.0581 0.9438 1.1238 0.9466 1.0165

T4 1.0230 1.2070 1.0631 1.1564 0.9488 1.1910 0.9794 1.0848

T5 0.8574 0.8898 0.7937 0.8353 0.8266 0.9055 0.7919 0.8275

Heteroskedasticity

τ = 0.2 τ = 0.7

T1 0.8686 1.0948 0.9157 0.9522 0.9411 1.0775 0.9958 0.9833

T2 0.9757 1.1553 1.0166 1.0379 0.8551 1.1081 0.8675 0.9251

100 T3 0.9674 1.0693 0.9761 0.9970 1.0162 1.1161 1.0486 1.0602

T4 0.9147 1.2504 0.9610 1.0918 1.0669 1.1447 1.0663 1.1058

T5 0.8125 0.8669 0.7416 0.7886 0.8636 0.8971 0.8100 0.8428

T1 0.8968 1.0935 0.9180 0.9583 0.9294 1.0963 0.9704 0.9808

T2 0.9160 1.1105 0.9281 0.9853 0.8862 1.1059 0.9159 0.9635

300 T3 0.9732 1.1454 0.9974 1.0508 1.0883 1.1669 1.1198 1.1510

T4 0.9679 1.1768 1.0043 1.1016 0.9803 1.1691 1.0098 1.1050

T5 0.8829 0.9212 0.8426 0.8705 0.8361 0.8906 0.7835∗ 0.8212

Autocorrelation

ρ = 0.3 ρ = 0.7

T1 0.9454 1.0719 0.9754 0.9806 0.9669 1.0303 0.9735 0.9803

T2 0.9732 1.1574 1.0655 1.0577 0.9761 1.0636 1.0107 1.0109

100 T3 1.0386 1.1642 1.0877 1.1041 0.9755 1.0323 0.9775 0.9941

T4 0.9927 1.1961 1.0337 1.1343 0.9609 1.1135 0.9750 1.0379

T5 0.8702 0.9059 0.8320 0.8552 0.9507 0.9635 0.9343∗ 0.9436

T1 0.9160 1.0785 0.9527 0.9651 0.9699 1.0388 0.9897 0.9904

T2 0.9617 1.0733 1.0041 1.0017 0.9759 1.0551 0.9794 1.0034

300 T3 0.9169 1.0321 0.9179 0.9470 1.0047 1.0614 1.0153 1.0306

T4 0.9560 1.1541 0.9862 1.0734 0.9770 1.0867 0.9937 1.0419

T5 0.8870 0.9114 0.8373 0.8687 0.9332 0.9617 0.9175∗ 0.9308

Notes: The cases where the Lasso performs best are marked with *.
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Table 2: RMSE of predictor relative to ML, benchmark model with misspecified

variance structure

N T WALS PTsw Ridge MMA WALS PTsw Ridge MMA

True: Heteroskedasticity vs. Model: Homoskedasticity

τ = 0.2 τ = 0.7

T1 0.8791 1.0779 0.8818 0.9391 0.8620 0.9946 0.8156 0.8805

T2 0.8871 1.1248 0.8902 0.9629 0.8816 1.1135 0.9068 0.9707

100 T3 1.0083 1.0942 1.0367 1.0588 0.9668 1.1325 0.9938 1.0305

T4 0.9209 1.2617 0.9499 1.0816 0.9712 1.2142 1.0127 1.0958

T5 0.8141 0.8625 0.7290 0.7901 0.8814 0.8973 0.8262 0.8593

T1 0.9626 1.1009 1.0397 1.0072 0.8514 0.9944 0.8119 0.8774

T2 0.9692 1.0633 0.9921 1.0028 0.8996 1.1138 0.9138 0.9718

300 T3 0.9791 1.1462 1.0125 1.0631 0.9486 1.0815 1.0018 0.9952

T4 0.9792 1.1874 1.0179 1.1055 0.9288 1.2552 0.9701 1.0808

T5 0.9059 0.9413 0.8808 0.9011 0.8295 0.8637 0.7621∗ 0.8089

True: Autocorrelation vs. Model: Homoskedasticity

ρ = 0.3 ρ = 0.7

T1 0.9282 1.0578 0.9463 0.9565 0.9676 1.0004 0.9696 0.9733

T2 0.9770 1.1246 1.0475 1.0352 0.9559 1.0119 0.9707 0.9647

100 T3 0.8848 1.0384 0.8981 0.9373 0.9796∗ 1.0367 1.0032 0.9952

T4 0.9960 1.1484 1.0178 1.0792 0.9608 1.0684 0.9627 0.9961

T5 0.8433 0.8593 0.7589 0.8087 0.9298 0.9322 0.8935∗ 0.9186

T1 0.9336 1.0364 0.9278 0.9549 0.9858 0.9973 0.9847 0.9872

T2 0.9085 1.0604 0.9101 0.9502 0.9854 1.0049 0.9931 0.9891

300 T3 0.8861 1.0437 0.8840 0.9304 0.9801 1.0087 0.9813 0.9857

T4 0.9352 1.1547 0.9503 1.0388 0.9876 1.0316 0.9940 1.0045

T5 0.9198 0.9336 0.8836 0.9052 0.9777 0.9810 0.9690∗ 0.9747

Notes: The cases where the Lasso performs best are marked with *.
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Table 3: RMSE of prediction variance relative to ML, benchmark model

N T WALS PTsw Ridge WALS PTsw Ridge

Homoskedasticity

σ2 = 0.25 σ2 = 1.00

T1 0.7705 12.4493 2.1666 0.7522 11.2950 2.1449

T2 0.7764 15.1548 2.3576 0.7713 15.7852 2.5135

100 T3 0.9308 18.6651 2.078 1.0320 18.9677 2.098

T4 0.7994 18.4211 1.5021 0.8891 17.9466 1.2263

T5 0.8860 3.9061 0.8432 0.9018 3.7078 0.7918

T1 1.1500 19.4101 2.9729 1.1275 17.6688 2.7914

T2 1.0511 22.9106 2.9839 1.0772 19.4464 2.6359

300 T3 1.1522 25.5762 2.5351 1.2878 27.3103 2.8858

T4 1.0384 21.6868 1.5944 1.0836 24.784 1.5367

T5 1.2193 5.6784 1.2485 1.3494 5.1687 1.0811

Heteroskedasticity

τ = 0.2 τ = 0.7

T1 0.9597 18.4978 3.7192 1.0356 16.8279 2.9426

T2 0.9841 24.0451 3.4681 0.9579 19.6745 2.8953

100 T3 0.8782 26.5659 3.6966 0.9063 25.9683 3.3147

T4 1.0118 28.2063 2.1269 0.9745 25.8139 1.9241

T5 0.9999 6.0100 1.4057 0.9156 4.1588 1.0565

T1 1.4646 21.8929 3.6805 1.1830 18.4289 3.1342

T2 0.8894 21.8063 3.4242 1.1305 21.4529 3.5049

300 T3 1.2380 38.0474 3.7362 1.0423 25.0548 2.8665

T4 1.1365 25.5628 1.9827 1.0312 22.7574 1.7846

T5 1.3706 6.8729 1.4947 1.3548 5.1632 1.2371

Autocorrelation

ρ = 0.3 ρ = 0.7

T1 1.0763 2.9660 1.2644 1.0006 1.0333 1.0084

T2 1.0572 3.3235 1.3119 1.0020 1.0551 1.0168

100 T3 1.0448 3.9628 1.2677 0.9995 1.0837 1.0208

T4 1.0220 3.8020 1.1374 1.0048 1.0429 1.0074

T5 1.0857 1.5015 1.0845 1.0025 1.0205 1.0117

T1 1.0090 1.6805 1.0774 0.9967 1.0176 1.0011

T2 1.0054 1.8272 1.0972 0.9994 1.0139 1.0003

300 T3 0.9969 2.1176 1.1117 0.9986 1.0213 1.0006

T4 0.9987 1.9475 1.0314 1.0011 1.0144 1.0048

T5 1.0134 1.2023 1.0275 1.0004 1.0111 1.0071
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Table 4: RMSE of prediction variance relative to ML, benchmark model with

misspecified variance structure

N T WALS PTsw Ridge WALS PTsw Ridge

True: Heteroskedasticity vs. Model:Homoskedasticity

τ = 0.2 τ = 0.7

T1 0.7253 10.4231 1.8953 0.7661 3.4554 1.2857

T2 0.7697 12.7449 2.1457 0.7735 4.6074 1.5391

100 T3 0.9335 17.1952 1.7612 0.8227 5.3035 1.325

T4 0.7712 17.6055 1.2863 0.7911 7.2121 1.2338

T5 0.8075 3.2420 0.8858 0.7341 1.6100 0.8037

T1 1.0160 14.3814 2.3035 0.8610 4.4361 1.4380

T2 0.9381 16.018 2.3322 0.8892 5.7947 1.5523

300 T3 1.1818 22.3939 2.2758 0.8486 5.9459 1.6541

T4 1.0859 19.5866 1.4083 0.8569 6.9118 1.2931

T5 1.2145 4.9999 1.1445 0.8389 2.0581 1.0155

True: Autocorrelation vs. Model: Homoskedasticity

ρ = 0.3 ρ = 0.7

T1 0.4605 7.4888 1.7774 0.7421 1.7426 1.1076

T2 0.5017 9.3554 2.0489 0.7315 2.0768 1.2069

100 T3 0.5758 11.6348 1.9644 0.7152 2.2064 1.1793

T4 0.6093 13.4394 1.6321 0.7654 2.9775 1.2764

T5 0.4557 2.8689 1.0401 0.7187 1.3433 0.9837

T1 0.5028 8.9684 2.1002 0.7656 1.8551 1.1876

T2 0.5696 11.7732 2.7547 0.7648 2.1344 1.2658

300 T3 0.6350 15.5284 2.4423 0.7830 2.3613 1.3001

T4 0.6176 15.1421 1.7957 0.7954 3.0360 1.3166

T5 0.4686 3.7499 1.3042 0.7308 1.5112 1.0849
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Table 5: RMSE of prediction variance relative to ML, random regressor model

N T WALS PTsw Ridge WALS PTsw Ridge

Homoskedasticity

σ2 = 0.25 σ2 = 1.00

T1 0.7174 1.0224 0.7555 0.7169 1.0371 0.7584

T2 0.7565 1.0243 0.7920 0.7506 1.0099 0.7813

100 T3 0.8208 1.0019 0.8408 0.8187 1.0047 0.8386

T4 0.8520 1.0024 0.8765 0.8502 0.9992 0.8760

T5 0.5077 0.9316 0.5337 0.4996 0.9673 0.5421

T1 0.7119 1.0375 0.7538 0.7161 1.0303 0.7586

T2 0.7583 1.0123 0.7908 0.7543 1.0154 0.7891

300 T3 0.8248 1.0072 0.8435 0.8231 0.9993 0.8417

T4 0.8555 0.9954 0.8780 0.8549 0.9951 0.8771

T5 0.5042 0.9977 0.5503 0.5018 0.9881 0.5405

Heteroskedasticity

τ = 0.2 τ = 0.7

T1 0.7134 1.0418 0.7593 0.6708 1.0403 0.7332

T2 0.7549 1.0181 0.7881 0.7157 1.0277 0.7556

100 T3 0.8195 1.0054 0.8386 0.7933 1.0140 0.8224

T4 0.8483 0.9998 0.8736 0.8238 0.9989 0.8466

T5 0.5002 0.9478 0.5296 0.5114 0.8856 0.5149

T1 0.7104 1.0350 0.7577 0.6824 1.0665 0.7503

T2 0.7567 1.0109 0.7898 0.7138 1.0348 0.7591

300 T3 0.8242 1.0059 0.8456 0.7918 1.0115 0.8173

T4 0.8515 0.9948 0.8739 0.8223 1.0016 0.8417

T5 0.5021 0.9772 0.5467 0.5219 0.9385 0.5378

Autocorrelation

ρ = 0.3 ρ = 0.7

T1 0.7076 1.0425 0.7543 0.7322 1.0715 0.8107

T2 0.7472 1.0188 0.7849 0.7369 1.0400 0.7898

100 T3 0.8155 1.0194 0.8389 0.7844 1.0203 0.8221

T4 0.8416 1.0003 0.8647 0.7962 1.0065 0.8201

T5 0.5362 0.9838 0.6091 0.6883 1.0634 0.8157

T1 0.7111 1.0409 0.7612 0.7304 1.093 0.8164

T2 0.7475 1.0164 0.7792 0.7465 1.0614 0.8045

300 T3 0.8182 1.0101 0.8399 0.7911 1.0418 0.8377

T4 0.8461 0.9952 0.8667 0.7972 1.0176 0.8234

T5 0.5359 1.0354 0.6277 0.7072 1.1273 0.8631
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Table 6: RMSE relative to ML, many auxiliary regressors (N = 100)

Homoskedasticity Heteroskedasticity Autocorrelation

(σ2 = 1.0) (τ = 0.7) (ρ = 0.3)

T WALS PTsw Ridge WALS PTsw Ridge WALS PTsw Ridge

Benchmark model: fixed X, fixed β

Predictor

TL1 0.7591 1.2069 0.6964 0.8039 1.1275 0.7702 0.7808 1.1566 0.7118

TL2 0.8638 1.1585 0.8865 0.8673 1.0734 0.8202 0.9023 1.1918 0.9102

TL3 0.8595 1.2355 0.8926 0.8524 1.2380 0.8525 0.8261 1.1965 0.8785

TL4 0.8302 1.0738 0.7956 0.7592 1.0172 0.6454 0.8086 1.0391 0.7389

Prediction variance

TL1 0.3901 16.0771 0.7418 0.3846 6.3836 0.5382 0.2605 9.9138 0.7110

TL2 1.2117 19.7130 0.5531 0.6630 9.9167 0.6657 0.7803 16.5338 0.7236

TL3 0.3515 18.4750 0.7720 0.4030 11.791 0.7533 0.3216 14.9398 0.8051

TL4 0.4038 9.1290 0.6599 0.4031 4.7738 0.5140 0.2625 6.5811 0.6292

Random regressor model: random X, fixed β

Predictor

TL1 0.8362 1.1644 0.8271 0.8293 1.1363 0.8190 0.8441 1.1417 0.8380

TL2 0.9321 1.0886 0.9321 0.9281 1.0452 0.9297 0.9357 1.0851 0.9337

TL3 0.9029 1.2432 0.9066 0.8976 1.2250 0.9104 0.9127 1.2372 0.9194

TL4 0.8082 1.0296 0.7860 0.8084 1.0177 0.7840 0.8175 1.0266 0.7979

Prediction variance

TL1 0.7624 1.0285 0.7510 0.7198 1.0495 0.7098 0.7487 1.0332 0.7369

TL2 0.8065 1.0156 0.8000 0.7764 1.0297 0.7615 0.7933 1.0168 0.7832

TL3 0.8249 1.0068 0.8389 0.8005 1.0178 0.8007 0.8170 1.0125 0.8254

TL4 0.7307 1.0459 0.7166 0.6825 1.0724 0.6800 0.7181 1.0571 0.7100

Random coefficient model: fixed X, random β

Predictor

TL1 0.9912 0.9497 0.9954 0.9761 1.0468 0.9717 0.8656 1.0801 0.8491

TL2 1.0526 1.0524 1.0487 0.9823 1.0302 0.9839 0.9170 1.0674 0.9078

TL3 1.2467 1.3362 1.2592 0.9848 1.0471 0.9784 0.9437 1.1541 0.9553

TL4 0.9844 0.9454 0.9874 0.9864 1.0338 0.9838 0.8813 1.0603 0.8878

Prediction variance

TL1 0.5540 1.0402 0.6835 0.5237 1.0459 0.6335 0.5418 1.0584 0.6630

TL2 0.5484 1.0785 0.6714 0.5151 1.0859 0.6276 0.5426 1.0837 0.6608

TL3 0.5785 1.0762 0.7222 0.5419 1.0860 0.6714 0.5700 1.0749 0.7083

TL4 0.5478 1.0301 0.6729 0.5161 1.0342 0.6200 0.5406 1.0454 0.6580
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Figure 2: Estimated variance in the benchmark model (N = 100)
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Figure 3: RMSE of prediction variance in random coefficient model (N = 100)
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Figure 4: RMSE of prediction variance: homoskedastic versus heteroskedastic

(N = 100, T = T1)
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