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1 INTRODUCTION

Since the breakout of US and European debt crisis, most countries have experienced a large

and rapid increase in their sovereign government debt. Considerable attention has thus been

paid to a country’s credit risk, especially those under great economic pressure. To fully recover

from the crisis and hopefully avoid future debt crises, a crucial task is to understand the nature

of sovereign credit risk, namely, whether the sovereign credit risk is driven by local economic

performance or by forces from the global market. Furthermore, it is of equal significance and

interest to forecast future sovereign credit risks. A good forecast could not only serve as a

crucial basis of an effective policy but also directly influence the ability of financial market

participants to diversify risks. As a popular indicator of sovereign credit risk, the determinants

of sovereign credit default swap (CDS) spreads have been widely studied for both developed

and emerging countries (Longstaff et al., 2011; Dieckmann and Plank, 2012). The literature

suggests that although some common patterns could be found within certain sub-samples, the

potential determinants exhibit significant heterogeneity across countries. Hence, to examine the

determinants of sovereign CDS spreads and forecast the future spreads, it is important to model

heterogeneity in the best way.

Existing studies on sovereign CDS spreads are either based on individual time series regres-

sions or on a pooled regression model. The former considers separate models for each country

as in Longstaff et al. (2011) and Dieckmann and Plank (2012) and estimates the parameters

of the individual model independently. The pooled models (Remolona et al., 2008) ignore the

heterogeneity and assumes homogeneous coefficients for all countries. The question is which

assumption leads to more reliable results, and whether there exists any alternative and better

way to handle the heterogeneity.

The issue on how to model the potentially heterogeneous parameters across individual units

is sometimes poetically referred by econometricians to as “to pool or not to pool”. This is a

long-existing issue in the panel data analysis, but there is still no consensus on it. An increasing

number of studies have noted that the homogeneity assumption of parameters is vulnerable

in practice, and that the violation of this assumption can produce misleading estimates. For

example, Su and Chen (2013) and Durlauf et al. (2001) provided strong cross-country evidence

of heterogeneity, and ample microeconomics evidence can be found in Browning and Carro

(2007). On the other hand, many empirical studies find that the pooled estimator and forecast

often outperform those obtained from individual time series analysis in terms of mean square

(forecasting) error (MSE or MSFE), see, for example, Baltagi and Griffin (1997), Baltagi et al.

(2000), and Hoogstrate et al. (2000).

The above mentioned empirical results suggest that the pooling decision involves the typi-

cal bias-variance trade-off, and that the amount of pooling should depend on the situation at

hand. More specifically, one should balance the efficiency gains from pooling and the bias due

to individual heterogeneity. This then brings forth two questions. First, how do we make an
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appropriate trade-off between the efficiency and bias when estimating or forecasting in a het-

erogeneous panel data model? Second, is there a fit-for-all estimator that performs well in all

situations, and if not, how do we make a choice under different situations? This paper addresses

these two questions by introducing a novel pooling averaging procedure that makes an appropri-

ate bias-variance trade-off. Furthermore, we provide practical guidance on how best to handle

parameter heterogeneity in empirical research using panel data models.

The first contribution of this paper concerns a pooling averaging method that makes an op-

timal bias-variance trade-off in estimating and forecasting in heterogeneous panel data models.

The optimal trade-off is achieved by combining the estimators or forecasts from different pooling

specifications with appropriate weights. We theoretically examine both the finite-sample and

asymptotic properties of the pooling averaging estimator based on the often used Mallows crite-

rion. A practical issue for pooling averaging is that the number of pooling specifications can be

large even for a moderate number of individuals and regressors. Averaging over the entire model

space could be computationally intensive and inefficient. Consequently, we introduce a model

screening procedure to address this issue. Instead of estimating and averaging over all candi-

date models, we propose to first cluster individual units based on the similarity of parameter

estimates and average over group estimators obtained from different numbers of groups. This

would result in a much smaller post-screened model space, where averaging is computationally

more efficient and accurate. In addition, we find that averaging offers an alternative way to ad-

dress the difficulty of specifying the number of groups for the group estimators, since the same

trade-off between efficiency and consistency applies to choice of the number of groups here. Our

simulation and application both show that averaging over different numbers of groups generally

leads to better forecasts than selecting a specific number of groups.

There are of course several ways to address heterogeneity in the literature, for example,

the random coefficient model (RCM, Swamy, 1970), the pooled mean group estimator (Pesaran

et al., 1999), various group estimators (e.g. Bonhomme and Manresa, 2015; Su et al., 2016), see

Section 2 for a more thorough review of literature. These estimation strategies are useful, but

require correct specification of the heterogeneity structure or the number of groups. Another

stream of literature focuses on testing the homogeneity assumption. The estimator obtained after

a preliminary test is called the pretest estimator. Our proposed pooling averaging method has

three main advantages compared to the existing approaches. (i) Estimators from different pooling

specifications have different degrees of bias and variance. Our method makes an explicit bias-

variance trade-off by appropriately combining these estimators/forecasts. Hence, estimation and

forecasting is directly based on the MS(F)E. Note that existing methods based on other criteria

than MS(F)E cannot guarantee that the resulting estimators/forecasts achieve the minimum

MS(F)E. (ii) Our method does not require specifying the heterogeneity structure or the number

of groups, so parameters can be heterogeneous in any pattern. (iii) Our approach avoids the

problems caused by pretesting since it is continuous, unconditional, and takes model uncertainty

into account (Danilov and Magnus, 2004).
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The second contribution of this paper is that we analytically compare the finite sample

MS(F)E of different pooling estimators/forecasts, and analyse how the performance of these

estimators/forecasts varies over situations. From this analysis, we provide empirical researchers

with guidelines on how to handle parameter heterogeneity in panel data models. Given that

the performance of panel data methods is sensitive to data properties, it is important to un-

derstand which and how data properties matter in practice. We show that there is no single

method that performs best in all situations, and the performance depends on the features of

data and models, including the degree of coefficient heterogeneity, signal-to-noise ratio, time se-

ries dimension, cross-sectional dimension, number of regressors, and the choice of weights. This

theoretical finding is supported by simulation studies. We conclude that the pooling averag-

ing estimator/forecast, especially Mallows pooling averaging, is recommended when the panel

is heterogeneous and the signal-to-noise ratio is moderate or large, while the pooled estima-

tor/forecast is recommended when individual units have homogeneous slope parameters and a

small signal-to-noise ratio.

After showing how to deal with slope heterogeneity in an optimal way, we turn back to our

empirical question, examining and forecasting sovereign CDS spreads for a panel of countries.

We extend the time dimension of the data of Longstaff et al. (2011) to 2016. Given the presence

of financial crises in our updated sample, we consider possible structural breaks in the slope

coefficients. We employ recent developments of structural break detection in heterogeneous

panels to identify the change points, and investigate the effect of determinants and the forecasting

performance of competing methods with and without structural breaks. In general we find

that the pooling averaging provides intuitive estimates. By exploring cross-section variation in

an optimal manner, pooling averaging also produces more accurate forecasts than alternative

methods.

The remainder of this paper is organized as follows. Section 2 briefly reviews parameter

estimation and testing strategies for heterogeneous panel data models. Section 3 discusses the

model setup and introduces the general pooling averaging estimator. Section 4 presents the

MSFE of our pooling averaging forecast and compares it with pooled and individual forecasts.

Section 5 discusses the choice of weights in our pooling averaging procedure and its theoretical

properties. Section 6 introduces a model screening procedure. A simulation study is provided

in Section 7. Section 8 provides an empirical study of sovereign CDS spreads. Finally, Section 9

offers some practical suggestions on how to handle slope heterogeneity based on the theoretical,

simulation and empirical results. Technical proofs of all theorems and additional numerical

results are provided in the online appendix.
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2 LITERATURE REVIEW

The literature on heterogeneous panel data models mainly focuses on how to estimate a (possibly)

heterogeneous parameter and how to test the homogeneity assumption. Estimating heteroge-

neous slope parameters in panel models can be dated back to Swamy (1970), who proposed a

RCM and estimated the mean of the heterogeneous coefficient (average effect) using general-

ized least squares (GLS). Pesaran and Smith (1995) recommended estimating the average effect

using the mean group estimator that equally averages the coefficients obtained from separate

regressions for each individual. Another widely used average-effect estimator first aggregates

the data over individuals and then estimates aggregated time-series regressions. A seminal and

comprehensive study of aggregation estimation is given by Pesaran et al. (1989). See Hsiao and

Pesaran (2008) for a comprehensive review of methods for RCMs.

If the average effect is of interest, the GLS estimator is shown to provide an optimal trade-off

between bias and efficiency (Swamy, 1970). However, researchers sometimes are more interested

in the individual parameters (individual-specific effect), especially when providing heterogeneous

policy implications and decisions or forecasting individual time series is the primary goal of

research. This paper focuses on estimating the individual-specific effect and making individual

forecast. A popular individual-specific-effect estimator is the shrinkage estimator proposed by

Maddala et al. (1997), which is a combination of the pooled and individual regressions. In

a dynamic context, Pesaran et al. (1999) distinguished between the long-run and short-run

parameters, and only allowed the short-run parameters to be heterogeneous (pooled mean group

estimator). The validity of this estimator relies on a careful specification of the long-run and

short-run parameters, which however, is not required in our set-up. See Baltagi et al. (2008) for

an excellent survey of estimating heterogeneous coefficients in panel models.

Recent developments in individual-specific-effect estimation involve a latent class/group spec-

ification, such as finite mixture models and various grouped estimators. For example, Ando and

Bai (2016) estimated the panel data models with unobserved group factors. Like the pooled mean

group estimator, a heterogeneity structure is imposed where only the factors and their loadings

are heterogeneous. To estimate group-specific parameters and the unknown group membership

structure, various techniques have been proposed. Bonhomme and Manresa (2015) and Lin

and Ng (2012) suggested a k-means approach. Su et al. (2016) proposed a lasso-type estima-

tor. Wang et al. (2018) extended clustering algorithm in regression via data-driven segmentation

(CARDS) to a panel framework. These group estimators have noticeable merits, especially when

identifying the true grouping is of interest.

Unlike these existing approaches, our objective is not to consistently estimate the group mem-

bership and/or slope coefficients, but obtain the most accurate parameter estimator or forecast

in terms of MS(F)E. We make a simple, yet largely overlooked point, namely, when the objective

is to minimize MS(F)E, the true grouping is not necessary optimal. Using controlled incorrect

grouping may lead to a substantial gain in efficiency that offsets potential bias. Although MSE
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or MSFE criteria are usually applied in simulations and applications to evaluate panel estima-

tors and forecasts, most existing approaches are based on minimizing other criteria. Our pooling

averaging method explicitly aims at minimizing the MS(F)E. Furthermore, pooling averaging

also offers an alternative way of dealing with uncertainty in the number of latent groups in

classification methods by combining estimates obtained from different numbers of groups. Given

the trade-off between consistency and efficiency for different choices in the number of groups,

one can make an optimal trade-off by averaging and choosing appropriate weights.

An alternative way of dealing with the potential heterogeneity is to use statistical pretests

for parameter homogeneity under different model specifications. To give a partial list of possible

tests, Pesaran and Yamagata (2008) proposed dispersion type tests for large panels with large

cross section and time dimension. Juhl and Lugovskyy (2014) focused on the typical micro-panel

with large N and fixed T . Su and Chen (2013) proposed a residual-based test applicable in

panel models with interactive fixed effects. If the researchers’ ultimate interest lies in estimating

the parameters of the models, the pretest estimator is however not completely satisfactory.

The estimator is discontinuous and the testing result may depend on some arbitrarily chosen

significance level. These are the problems of pretesting estimators; see Danilov and Magnus

(2004) for a detailed discussion. Moreover, how to proceed after testing remains unclear. For

example, if the hypothesis of homogeneity is rejected, whether we should estimate individuals

separately or continue testing the subsamples? Even if the true model is selected, it does not

necessarily produce the best estimator in terms of MSE nor the best forecast in terms of MSFE.

Given this result, we propose a pooling average estimator and analyse its finite sample and

asymptotic properties. To our best knowledge, no finite sample properties of existing hetero-

geneous panel estimators are theoretically studied except for the shrinkage estimator (Maddala

et al., 2001). A recent study by Hashem and Zhou (2018) provided a comparative analysis of

pooled least squares versus fixed effects estimators of the slope coefficients. While they focus on

pooling in standard panel data models with homogeneous slopes, we consider the pooling deci-

sion in the model with cross-sectionally heterogeneous slopes. Our study is also related with the

panel forecast literature; See the review by Baltagi (2008) and references therein. Most studies

are based on the best linear unbiased prediction. Instead of producing an unbiased predictor,

we focus on achieving the minimum MSFE by balancing the bias and efficiency.

A limitation of our approach is that we only provide point estimates for the coefficients,

and thus statistical inference is challenging. To address this issue, we provide a practical way

to estimate the variance and confidence interval of the estimator based on bootstrap. The

theoretical justification of using bootstrap statistics in the model averaging framework is beyond

the scope of this paper and deserves future research.
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3 POOLING AVERAGING ESTIMATION

3.1 Model setup

Consider the linear panel data model with heterogeneous slopes

yi = Xiβi + ui i = 1, . . . , N, (1)

where yi = (yi1, . . . , yiT )′ and Xi = (X ′i1, . . . , X
′
iT )′ is a T × k matrix of explanatory variables

including the intercept, that is, Xit1 = 1 for all i, t. We assume that the series {yit, Xit} are

both stationary for all i = 1, . . . , N , and thus we rule out the possibility of time-varying slope

coefficients. The coefficient βi = (βi1, . . . , βik)
′ is assumed to be fixed but allowed to differ across

individuals, that is, some or all of the elements in βi can be different from the elements in

βj for i 6= j.1 If pooling of the individual-specific intercept is not desired, one can eliminate

the fixed effect using a within transformation. For notation convenience, we first assume that

the error term of each individual ui is independently and identically distributed (IID) across

time, but different individuals can have heteroskedastic errors with mean zero and variance

σ2
i IT (between-individual heteroskedasticity). Later we shall relax this assumption by allowing

conditional heteroskedastic errors both between and within individuals. The u1, . . . , uN terms

are assumed to be uncorrelated conditional on Xi for all i. In some cases we use the matrix form

of (1) which is given by

y = Xβ + u, (2)

where y = (y′1, . . . , y
′
N)′, X = diag(X1, . . . , XN), β = (β′1, . . . , β

′
N)′, and u = (u′1, . . . , u

′
N)′.

To derive our pooling estimator we focus on the case of strictly exogenous explanatory vari-

ables and assume that model (1) is correctly specified in regressors. This assumption ensures the

unbiasedness of the individual estimator, but it rules out the dynamic model where the lagged

dependent variable is included as explanatory variables.2

3.2 Average pooling strategies

Our goal is to estimate each individual coefficient βi or forecast individual outcome variable. The

value of individual coefficients is of particular interest when individualized policies or decisions

need to be made. This goal is different from the RCM where one wants to estimate a common

average effect, say E(βi).

To estimate the βi parameters in (1), one can consider separate least-square (LS) estimators

for each time series as long as T > k, β̂i = (X ′iXi)
−1X ′iyi, called the individual estimator. The

1Note that we do not assume that βis share a common mean and a common variance as in RCMs, nor do we

require a group pattern of coefficient heterogeneity as in panel (group) structure models (Su et al., 2016).
2In the dynamic panel and the presence of omitted variables, least square estimation of individual time series

is biased, and theorems derived later in Section 5.1 do not hold. Nevertheless, the bias-variance trade-off remains

relevant.
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individual estimator β̂i is unbiased given that individual i’s regression is correctly specified.

However, this estimator does not make use of any cross-section variation at all, and thus its

variance can be larger than that of a pooled LS estimators.

In the other extreme, one could ignore the slope heterogeneity and estimate the pooled model,

obtaining a common estimator for all individuals, that is,

b = (
N∑
i=1

X ′iXi)
−1

N∑
i=1

X ′iXiβ̂i.

The pooled estimator β̂pool = (b′, . . . , b′)′ has smaller variances than the individual estimator,

but can be severely biased due to incorrect pooling of heterogeneous coefficients. The compar-

ison between these two estimators suggests a typical bias-variance trade-off in choosing which

estimator to use. The forecast of individual outcome variable that associates with β̂i and β̂pool

can be obtained by ŷi = Xβ̂i and ŷpool = Xβ̂pool, respectively, and they face precisely the same

bias-variance trade-off.

An intermediate estimator (between the individual and pooled estimators) restricts some of

the coefficients to be identical, which is obtained by imposing equality restrictions to a set of

coefficients when estimating (2), that is,

Rmβ = 0, (3)

where Rm is the restriction matrix under the m-th pooling strategy. For instance, if the restric-

tion is βi = βj for j > i, then Rm =
(
0k×(i−1)k, Ik, 0k×(j−i−1)k,−Ik, 0k×(N−j)k

)
. For each Rm, we

can construct the projection matrix Pm

Pm = INk − (X ′X)−1R′m(Rm(X ′X)−1R′m)−1Rm, (4)

so that the OLS estimator under the m-th pooling strategy is

β̂(m) = Pmβ̂, (5)

where β̂ = (β̂′1, . . . , β̂
′
N)′ is the vector of individual OLS estimators. The estimator β̂(m) allows

estimated coefficients to vary over individuals while restricting some of them to be the same.

Different pooling strategies are characterized by different restrictions Rm, and the resulting

estimators have different degrees of bias and variance. The question is then how to determine

which pooling strategy to use. One approach is to test or select the most appealing pooling

strategy based on some data-driven criterion. However, in practice, the true model is difficult to

select because it is hard to distinguish whether the efficiency loss is from inefficient pooling or

estimation noise. Even if one can select the correct parameter restrictions, the true restriction

specification does not always produce the best estimator or forecast in terms of MSE and MSFE.

This happens, for example, when the heterogeneity in coefficients and the signal-to-noise ratio

are both small. In this case pooling heterogeneous individuals incorrectly may lead to lower
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MS(F)E, because the efficiency gains from pooling dominate the heterogeneity bias. Therefore,

if the MS(F)E of the coefficient estimates or the forecasts of the yi variables are of central

interest, it is less plausible to test or select the right pooling pattern.

To achieve an optimal trade-off between bias and efficiency, we propose to average estimators

or forecasts from different pooling strategies and appropriately choose the weights. Our pooling

averaging estimator is given by

β̂(w) =
M∑
m=1

wmβ̂(m) =
M∑
m=1

wmPmβ̂ = P (w)β̂, (6)

where M is the number of candidate pooling strategies, P (w) =
∑M

m=1wmPm is an Nk × Nk
matrix, and w = (w1, . . . , wM)′ belongs to the set W = {w ∈ [0, 1]M :

∑M
m=1wm = 1}.3 Its

associated combined forecast is ŷ(w) = Xβ̂(w). In practice, the number of pooling strategies

M can be substantial, and in this case we propose to “screen out” poor pooling strategies as a

preliminary step based on efficient clustering in Section 6.

Our pooling averaging estimator is in sharp contrast to the average-effect estimators. Since

each pooling estimator β̂(m) provides estimates of slope coefficients for each individual, averaging

over M pooling estimators leads to potentially different individual-specific estimates. This differs

from the average-effect estimator (e.g. Pesaran and Smith, 1995; Swamy, 1970) that produce a

common coefficient estimate for all units. We shall compare β̂(w) with average-effect estimators

in the Monte Carlo simulation and applications.

Our pooling averaging estimator (6) includes the pretesting estimator as a special case that

assigns all weights to a single candidate estimator. It is also closely related with the popular

shrinkage estimator provided by Maddala et al. (1997), defined as

β̂shrinkage =
(

1− ν

F

)
β̂ +

ν

F
β̂pool, (7)

where ν = [(N − 1)k− 2]/[NT −Nk+ 2] and F is the test statistic for null hypothesis H0 : β1 =

. . . = βN . When the “weight” ν/F is between 0 and 1, β̂shrinkage can be regarded as a special

case of the pooling average estimator that combines only the pooled and individual estimators

(see the online appendix for further discussion on their relationship).

4 THEORETICAL MSFE COMPARISON

Before we discuss the choice of weights for the pooling averaging estimator, we first examine

under which situation the pooling averaging exhibits good finite sample performance in general.

3The pooling averaging estimator can be written as a weighted average of the individual estimator β̂ as in (6),

where the associated weight wmPm is a matrix. Instead of optimizing the scalar weight wm, direct optimization

of the whole matrix wmPm (assuming Pm is unknown) is possible. This is not only computationally more difficult

but also not efficient given that Pm is observed.
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To save space, the discussion will focus on forecasting and we theoretically compare the mean

square forecast error of pooling averaging with the pooled and individual time series models.

The comparison of slope coefficient estimators can be done in a similar way.

The purpose of this analysis is twofold. Although there have been many empirical studies

showing that the performance of forecasts/estimators differs significantly in applications, there is

lack of theoretical explanation, and no consensus is reached on which method to use in different

practical situations. Hence, the first purpose is to provide theoretical explanations for the

diverging performance of forecasts/estimators. Second, the theoretical comparison also sheds

some light on how data and model features, e.g. the degree of coefficient heterogeneity and level

of noise, affect the performance of alternative forecasts. This further provides guidance on which

method to choose in practice. To sharpen the focus and highlight the role of different quantities

on the forecasts, we first assume that the weights are non-random. In Section 4.3 we consider

random weights which corresponds to the situation where the weights have to be estimated from

the data.

For notation simplicity, we denote Qi = X ′iXi/T , Q =
∑N

i=1Qi, and ‖θ‖2A = θ′Aθ for any

vector θ, where A = diag(A1, . . . , AN) = X ′X and Ai = X ′iXi for i = 1, . . . , N .4 We perform

the MSFE comparison under between-individual heteroskedastic errors. We denote the variance

of the individual coefficient estimator as Vi = σ2
iQ
−1
i /T and let V = diag(V1, . . . , VN). The

analysis can easily be extended to (completely) conditional heteroskedastic errors but with more

notational complexity.

4.1 MSFE of pooled and individual forecasts

The pooled forecast can be obtained by ŷpool = Xβ̂pool, where β̂pool = (b′, . . . , b′)′ and b =

Q−1
∑N

i=1Qiβ̂i. The individual forecast is based on individual estimators, that is, ŷind =

(ŷ′1, . . . , ŷ
′
N)′ with ŷi = Xβ̂i, and these individual estimators β̂i’s are uncorrelated with β̂i ∼

(βi, σ
2
iQ
−1
i /T ).5 Hence, the MSFEs of the individual and pooled forecasts can be obtained by

MSFEind ≡ MSFE(ŷind) =
N∑
i=1

E‖β̂i − βi‖2Ai
=

1

T

N∑
i=1

σ2
i tr(Q

−1
i Ai) (8)

and

MSFEpool ≡ MSFE(ŷpool) =
N∑
i=1

E‖b− βi‖2Ai

=
N∑
i=1

‖Q−1
N∑
i=1

Qiβi − βi‖2Ai
+
N

T

N∑
i=1

tr(σ2
iQ
−1QiQ

−1Ai). (9)

4The comparison of slope coefficient estimates can be made by setting A = INk.
5In the dynamic panel the OLS estimator is biased. Comparing the MSFEs of biased estimators is still

possible, but it complicates the analysis since the degree of bias differs across model specifications.
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The first term in (9) captures the bias caused by pooling heterogeneous coefficients, and the

second term measures the variance. Note that for fixed N , as T goes to infinity, MSFEind is

generally of lower order than the first term in (9), suggesting that individual forecast is always

better than the pooled forecast under fixed N and large T asymptotics. However, if both N

and T go to infinity, there can exist a trade-off if (8) and the first term of (9) are of comparable

scale. Furthermore, there is no guarantee that MSFEind is less than MSFEpool in finite samples.

The relation between the finite sample MSFEind and MSFEpool depends on the magnitude of the

bias term
∑N

i=1 ‖Q−1
∑N

i=1Qiβi − βi‖2Ai
and the difference between two scaled variance terms

1
T

∑N
i=1 σ

2
i tr(Q

−1
i Ai)−N

T

∑N
i=1 tr(σ2

iQ
−1QiQ

−1Ai). In practice, error variances may be quite large

in which case the variance term dominates. Hence, this explains, to some extent, why individual

time series forecasts are less preferred in most empirical research.

4.2 MSFE of pooling averaging forecast with fixed weights

We first derive the MSFE of the pooling averaging forecast ŷ(w) = Xβ̂(w) assuming weights are

given. In this case, we have

MSFEfw(ŷ(w)) = E‖β̂(w)− β‖2A = E‖P (w)β̂ − β‖2A
= ‖P (w)β − β‖2A + tr[P (w)V P ′(w)A]. (10)

We see that the comparison between the MSFEs depends on the degree of heterogeneity in the

true coefficients β, the error variances of individual regressions σ2
i ’s contained in V , A, and of

course the weight choice. To shed light on this comparison, we consider below several special

cases.

First, if the pooling averaging estimator β̂(w) only averages over the pooled and individual

estimators, namely β̂(w) = w1β̂pool + w2β̂, we can write MSFEfw(ŷ(w)) in terms of MSFEpool

and MSFEind as

MSFEfw(ŷ(w)) =
N∑
i=1

E‖w1b+ w2β̂i − βi‖2Ai

=
N∑
i=1

E‖w1Q
−1

N∑
i=1

Qiβ̂i + w2β̂i − βi‖2Ai

=
N∑
i=1

‖w1Q
−1

N∑
i=1

Qiβi + w2βi − βi‖2Ai
+

N∑
j=1

var(w1A
1/2
i Q−1

N∑
i=1

Qiβ̂i + w2A
1/2
i β̂j)

= w2
1MSFEpool + w2

2MSFEind + 2w1w2
1

T

N∑
i=1

σ2
i tr(Q

−1Ai). (11)

The comparison will be even more clear if all regressors are normalized, such that Qi = Ik and
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thus Q = NIk. In this case, we have

MSFEind = k
N∑
i=1

σ2
i , MSFEpool =

N∑
i=1

‖β̄ − βi‖2Ai
+
k

N

N∑
i=1

σ2
i , (12)

and

MSFEfw(ŷ(w)) = w2
1

N∑
i=1

‖β̄ − βi‖2Ai
+ w2

2

(N − 1)k

N

N∑
i=1

σ2
i +

k

N

N∑
i=1

σ2
i , (13)

where β̄ = N−1
∑N

i=1 βi. Comparing the pooling averaging and pooled forecast, we see that

MSFEfw(ŷ(w)) < MSFEpool if and only if

N∑
i=1

‖β̄ − βi‖2Ai
>

w2
2

1− w2
1

· (N − 1)k

N

N∑
i=1

σ2
i . (14)

This suggests that the pooling averaging forecast is superior to the pooled if the difference

between individual coefficients is large enough. In the extreme case of a completely homoge-

neous panel
∑N

i=1 ‖β̄ − βi‖2Ai
= 0 ≤ w2

2(N − 1)k
∑N

i=1 σ
2
i /[N(1 − w2

1)], it always holds that

MSFEfw(ŷ(w)) ≥ MSFEpool as expected. It can also be seen from (14) that the pooled forecast

is more likely to outperform the pooling averaging when the variance of the errors σ2
i and/or the

number of regressors k increase.

When we compare the pooling averaging with the individual forecasts, we have that MSFEfw(ŷ(w)) <

MSFEind if and only if

N∑
i=1

‖β̄ − βi‖2Ai
<

1− w2
2

w2
1

· (N − 1)k

N

N∑
i=1

σ2
i . (15)

Inequality (15) shows that pooling averaging is advantageous over the individual time series

forecast when coefficient heterogeneity is bounded by the product of (N − 1)k
∑N

i=1 σ
2
i /N (since

(1 − w2
2)/w

2
1 > 1). Even if the panel is completely heterogeneous with all coefficients different

across individuals, pooling averaging can still outperform the individual forecast when the vari-

ance of the errors is large or when there are too many explanatory variables in the model. Or

in other words, large error variances favor the pooling averaging approach as the inequality (15)

is more likely to hold. These arguments will be confirmed by our simulation study.

4.3 MSFE of pooling averaging forecast with random weights

Next, we consider the case where weights are functions of the data. These weights are ran-

dom and correlated with the estimated coefficients as they are estimated from the same data.

Furthermore, the weights can also be correlated with each other. We define ρm = cov(wm, β̂),

12



κm,l = cov(wm, wl), and δm,l = cov(wmwl, β̂
′P ′mPlβ̂) for m, l ∈ {1, . . . ,M}. Let w̄ = E(w). Now

the MSFE of the pooling averaging forecast with random weights can be written as

MSFErw(ŷ(w)) = E‖P (w)β̂ − β‖2 = E‖P (w)β̂‖2 − 2E
{
β′P (w)β̂

}
+ ‖β‖2

= ‖P (w̄)β − β‖2 + tr [P (w̄)V P ′(w̄)] + ι′Φι+ Γ1 − 2Γ2,

where Φ is the matrix with the typical element δm,l, ι is a vector of ones,

Γ1 =
∑
m

∑
l

κm,l [β
′P ′mPlβ + tr (P ′mPlV )] , and Γ2 =

∑
m

β′Pmρm.

The first two terms of MSFErw(ŷ(w)) are similar to the terms of MSFEfw(ŷ(w)) in (10). Hence,

the degree of coefficient heterogeneity and the size of noise play a similar role in MSFE compar-

ison as in the fixed-weight case. Estimating the weights from the data however introduces three

extra covariance terms, which make the evaluation of the the MSFErw(ŷ(w)) more complicated.

To examine how the similarity of models affects the MSFE, we can rewrite the MSFErw(ŷ(w))

as

MSFErw(ŷ(w)) =
∑
m

∑
l

E(wmwl)

[
E
(
β̂(m)

)′
E
(
β̂(l)

)
+ tr(cov(β̂(m), β̂(l)))

]
+
∑
m

∑
l

δm,l − 2
∑
m

w̄mE
(
β′Pmβ̂

)
− 2

∑
m

β′Pmρm + ‖β‖2.

When candidate models are well-differentiated, resulting in a small tr(cov(β̂(m), β̂(l))), MSFErw(ŷ(w))

is likely to be small and pooling averaging using random weights is often more desirable. This is

in line with the conventional wisdom in the forecast combination literature that the diversifica-

tion gains from combination tend to be larger if candidate forecasts are strongly dissimilar (see,

e.g., Timmermann (2006) and Claeskens et al. (2016) for theoretical discussions). The influence

of the correlation between the weights and estimated slope coefficient estimates is less clear as

it depends on the explanatory variables and true values of the coefficients.

5 CHOOSING POOLING AVERAGING WEIGHTS

We have seen in Section 4 that the pooling averaging can make an appropriate trade-off between

bias and variance, depending on how the weights are chosen. In this section, we discuss how to

choose the appropriate pooling averaging weights.

5.1 Mallows pooling averaging

We propose to choose the weights based on the Mallows criterion. Using Mallows criterion to

average the models is initiated by Hansen (2007), which is asymptotically optimal in the sense

of achieving the lowest possible squared error. This method is further justified by Wan et al.
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(2010). To derive the Mallows pooling averaging (MPA) criterion in estimating a heterogeneous

panel, we define ‖θ‖2A = θ′Aθ for any vector θ and non-negative definite matrix A. The choice of

A depends on whether the interest is in forecasting or coefficient estimates. If forecasting is of the

main interest, we set A = X ′X; otherwise, we set A = INk. We generalize the heteroskedastic

structure of the error terms and now allow for conditional heteroskedasticicy between and within

individuals. Hence, if we define Ωi = var(ui) and Ξi = X ′iΩiXi/T , the variance of the individual

coefficient estimator β̂i can be written as Vi = Q−1i ΞiQ
−1
i /T with Qi = X ′iXi/T . When the errors

are between-individual heteroskedastic, Vi reduces to σ2
iQ
−1
i /T as used before in Section 4.

Under squared loss LA(w) = ‖β̂(w)−β‖2A and squared risk RA(w) = E{LA(w)}, the Mallows

criterion can be written as

CA(w) = ‖P (w)β̂ − β̂‖2A + 2tr[P ′(w)AV ]− ‖β̂ − β‖2A, (16)

where V = diag(V1, . . . , VN) as defined in Section 4. This criterion is a good approximate for

the MS(F)E, in the sense that it is an unbiased estimator of the squared risk under regular

conditions.6

The criterion CA(w) is a generalization of the Mallows model averaging criterion defined by

Hansen (2007). When Ωi = σ2IT for all i and A = X ′X, CA(w) simplifies to Hansen’s criterion

(Equation (11) in Hansen (2007)), which focuses on the average (forecasting) squared error loss

(Xβ̂(w)−E(y))′(Xβ̂(w)−E(y)). When we set A = INk, (16) extends Hansen’s (2007) criterion

to concentrate on the accuracy of the estimated coefficients, and CA(w) aims at minimizing the

average squared error of coefficient estimates. It is worth noting that if we only average the

pooled and individual estimators, then the Mallows pooling averaging estimator is essentially a

Stein-rule estimator (see Equation (2) of Maddala et al. (1997)). The weights of Mallows pooling

averaging estimator and Maddala et al.’s (1997) shrinkage estimator are proportional to each

other.7

In practice, the covariance matrix V is unknown, and has to be replaced by its estimate V̂ .

A feasible version of (16) is

C∗A(w) = ‖P (w)β̂ − β̂‖2A + 2tr[P ′(w)AV̂ ]− ‖β̂ − β‖2A, (17)

and the feasible weight vector is obtained by

ŵ∗ = arg min
w∈W
C∗A(w). (18)

Depending on the assumptions of the error structure, the covariance matrix V can be estimated

as follows:

1. Homoscedasticity: If we assume that var(ui) = σ2IT for all i, we estimate V by V̂homo =

σ̃2(X ′X)−1, where σ̃2 is the variance of residuals associated with from the individual OLS

estimator, i.e. σ̃2 = (Y −Xβ̂)′(Y −Xβ̂)/(NT −Nk).

6See the online appendix for the proof.
7See the online appendix for the details and proof.
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2. Between-individual heteroskedasticity: If we assume that var(ui) = σ2
i IT , we consider

V̂bh = diag(σ̂2
1Q
−1
1 , . . . , σ̂2

NQ
−1
N )/T , where σ̂2

i = û′iûi/(T − k) and ûi is the OLS residual of

the i-th individual regression.

3. Heteroskedasticity between and within individuals: If we assume that ui is (conditional)

heteroskedastic for each i = 1, . . . , N , the most general situation, we use

V̂ch =
1

T (T − k)
diag

(
Q−11

T∑
t=1

û21tX
′
1tX1tQ

−1
1 , . . . , Q−1N

T∑
t=1

û2NtX
′
NtXNtQ

−1
N

)
,

where ûit is the t-th element of ûi for i = 1, . . . , N and t = 1, . . . , T .

5.2 Finite sample and asymptotic properties

Given the fact that the variance of individual estimators vanishes under fixed N and large T re-

sulting in no bias-variance trade-off (as discussed in Section 4), we mainly discuss the properties

of the Mallows pooling averaging estimator under finite sample and large N , T asymptotics. We

first examine the finite sample property of the MPA estimator by obtaining its risk bound. The

risk bound is widely used as an important theoretical property (or justification) of an estimation

procedure (see, e.g., Yuan and Yang, 2005). It tells us how the Mallows pooling averaging per-

forms in the worst situation, and we can examine how this bound depends on the features of data.

Theorem 1. The upper bound of the risk of MPA estimator is

E {LA(ŵ)} ≤ 1

1− c
inf
w∈W

RA(w) +
1

1− c

(
1

c
tr(AV )− 2E(tr {P ′(ŵ)AV })

)
, (19)

where c is a constant belonging to (0, 1).

Proof : See Section A.1 of the online appendix.

It shows that up to the constant (1 − c)−1 and the additive penalty (1 − c)−1[c−1tr(AV ) −
2E(tr{P ′(ŵ)AV })], Mallows pooling averaging estimator β̂(ŵ) has the same risk performance as

the averaging estimator using the optimal weights, infw∈W RA(w). The result of (19) does not

depend on sample size. To further examine how this risk bound depends on various quantities

that characterize the data, let I1(·) and I2(·) denote the minimum and maximum eigenvalues

of a symmetric matrix. The following corollary provides the specific risk bounds of coefficient

estimates and forecasts, respectively.

Corollary 1. If there exist positive constants Ω̄ and c1 such that maxi=1,...,N I2(Ωi) ≤ Ω̄ and

mini=1,...,N I1(Qi) ≥ c1, then there exists c ∈ (0, 0.5) such that when A = INk,

E {LA(ŵ)} ≤ 1

1− c
inf
w∈W

RA(w) +
1− 2c

c(1− c)
NkΩ̄

Tc1
+

4

1− c
NkΩ̄

Tc1
, (20)
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and when A = X ′X,

E {LA(ŵ)} ≤ 1

1− c
inf
w∈W

RA(w) +
1− 2c

c(1− c)
NkΩ̄ +

4

1− c
NkΩ̄. (21)

Proof : See Section A.1 of the online appendix.

The implied risk bounds are particularly informative, as they demonstrate how the perfor-

mance of the Mallows pooling averaging estimator and forecast is determined by infw∈W RA(w)

and a set of constants {T,N, k, Ω̄, c1, c} in the worst situation. As expected, the risk bounds (in

both cases of A = INk and A = X ′X) are large if we have a large N panel with many regressors

and large variances of residuals. On the contrary, a large time dimension T can reduce the risk

bound when we focus on coefficient estimation (A = INk). Our simulation studies in Section 7

will provide numerical evidence of the effect of these constants.

Next, we study the asymptotic property of MPA estimator following the model averaging

literature. We assume that the following conditions hold when T,N →∞.

C.1: X ′iui = Op(T
1/2) uniformly for i = 1, . . . , N .

C.2: 0 < c1 ≤ mini∈{1,...,N} I1(T−1X ′iXi) ≤ maxi∈{1,...,N} I2(T−1X ′iXi) ≤ c2 <∞.

C.3: MNT−1/2ξ−1NTI2(A)→ 0 where ξNT = infw∈W RA(w).

Condition C.1 ensures that each individual estimation is consistent. Condition C.3 requires that

candidate models are approximations. For A = X ′X, we know that a necessary condition of C.3

is ξ−1NT = o(M−1N−1T−1/2), which is similar to the condition (7) of Ando and Li (2014). For

A = INk, C.3 simplifies to MNT−1/2ξ−1NT → 0, which constrains the rate of ξNT → 0. C.1 and

C.3 are not contradictory, because they require that candidate models are correctly specified on

the regressors, but misspecified on the pooling. Condition C.3 is of particular relevant when a

preliminary model screening step is taken to shrink the model space. We will clarify this point

in the next section.

Theorem 2. As T →∞ and N →∞, if Conditions C.1–C.3 are satisfied, then

LA(ŵ∗)

infw∈W LA(w)
→ 1, (22)

in probability, regardless of V̂ = V̂homo, V̂ = V̂bh or V̂ = V̂ch.

Proof : See Section A.1 of the online appendix.

This theorem suggests that MPA estimator β̂(ŵ) is asymptotically optimal in the sense that

its squared loss is asymptotically identical to that of the infeasible best possible model-averaging

estimator. This optimality statement is conditional on the given set of estimators as in Hansen

(2007).
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One issue of this method is that it only provides a point estimate for the coefficients. Con-

ducting inference is generally challenging for the model-averaging estimators. One possible way

is to adopt the local asymptotic framework. In this paper, we propose an alternative way to

conduct statistical inference in practice. We calculate the variance and confidence interval of the

Mallows pooling averaging estimator via bootstrap. Particularly, we implement cross-sectional

resampling (B times) following Kapetanios (2008), and compute the coefficient estimates for each

sample. The empirical variance and confidence interval are calculated using the B estimates.

When a pre-screening step is involved (see next section), the resampled data are used in both

the pre-screening and estimation step, and hence the bootstrap variance reflects the uncertainty

of both pre-screening and pooling averaging.

6 SHRINKING MODEL SPACE

In practice, the number of ways of imposing restrictions on the regression parameters can be

numerous for moderate and large N , creating a huge model space for model averaging and

selection. In this case, a preliminary step of model screening is desirable. We first provide

theoretical justification for the use of model screening in general, and then propose a specific

approach and discuss its properties.

First, to justify model screening, we letMs be a subset of {1, . . . ,M} andWs = {w ∈ [0, 1]M :∑
m∈Ms wm = 1 and

∑
m/∈Ms wm = 0} be a subset of W . The model-averaging estimator based

on the subset Ms is obtained by using the weight vector ŵs = arg minw∈Ws CA(w). We make

the following assumption:

C.4: There exist a non-negative series of νNT and a weight series of wNT ∈ W such that

ξ−1NTνNT → 0, infw∈W C∗A(w) = C∗A(wNT )− νNT , and P (wNT ∈ Ws)→ 1 as N, T →∞.

Under Conditions C.1–C.4, we can follow the proof of Theorem 3 of Zhang et al. (2016) and

show that the post-screened model-averaging estimator based on the candidate model set Ms

still achieves the asymptotic optimality, namely

LA(ŵs)

infw∈W LA(w)
→ 1.

Since the individual estimator is typically screened out by this procedure, this optimality theorem

provides particular theoretical support for post-screened model-averaging estimators because of

Condition C.3.

Next, for practical purpose, we need a procedure that can rule out the “poor” models that

impose equality restrictions incorrectly on far different coefficients. We propose to implement

model screening based on estimating panel structural models with different choices of the number

of groups. A panel structural model assumes that individual units are classified into groups, and

individuals in the same group share a common slope coefficient vector (Lin and Ng, 2012; Su
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et al., 2016). To estimate this model, we employ classifier-Lasso (C-Lasso) proposed by Su et al.

(2016). Obviously, each way of classifying individual units corresponds to a specific pooling

strategy. If the slope coefficients are characterized by a group pattern of heterogeneity and the

number of groups is correctly chosen, one can consistently estimate group membership and slope

coefficients. Even when the number is misspecified, C-Lasso provides good estimates of group

membership and slope coefficients under this misspecified number by minimizing the penalized

least squared objective function. Hence, by only considering estimates obtained from C-Lasso

with different numbers of groups, we rule out the poor classification that pools far different

individuals together.

There are several advantages of using C-Lasso for model screening. First, it is less arbitrary

compared to clustering based on artificially chosen thresholds. Second, it produces estimates

with well-understood and desired statistical properties. In particular, when there exists a group

pattern of heterogeneity and the number of groups is correctly specified or over-specified, the

estimated slope coefficients are consistent, while underspecification of the number of groups leads

to inconsistent estimates but gains more efficiency (Bonhomme and Manresa, 2015; Liu et al.,

2018). Therefore, the consistency-efficiency trade-off remains valid for the post-screening model

space. Third, it is computationally more attractive than k-means since it can be transformed

into a sequence of convex problems and does not depend on the initial values (Su et al., 2016).

There also exist various others methods to shrink the model space, such as top m model

screening and ordering model screening (e.g., Claeskens et al., 2006; Zhang et al., 2016), where

the screening is mainly based on the values of information criteria. The bias-variance properties

of these IC-based screening approaches are however less explicit compared to the proposed

screening approach. To avoid the danger of making arguments sensitive to our choice of

screening procedures, we will also consider in our Monte Carlo studies alternative methods, for

example, the mixture-like iterative (M-Estimation) method proposed by Liu et al. (2018) and

the agglomerative hierarchical clustering. Unreported results show that our main results are not

affected.8

Interestingly, model averaging also offers an effective way of addressing uncertainty when

determining the number of groups in panel structural models, especially when forecasting is of

central interest. Although one can consistently estimate the slope coefficients under the correctly

postulated number of groups, these consistent estimates are not necessarily the most accurate in

terms of minimum MSE, nor do they guarantee the best forecast in terms of minimum MSFE.

Instead of selecting the number of groups based on information criteria or testing procedures, one

can average estimates obtained from different numbers of groups. Given the trade-off between

consistency and efficiency for different choices of the number, one can make an optimal trade-

off by averaging and appropriately choosing the weights. The optimal weight choice depends

on whether the focus is on parameter estimation or forecasting. In the next section, we shall

8Detailed studies of alternative pre-screening methods are provided in the online appendix.
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compare the estimates/forecasts obtained from the selected best number of groups and those

from averaging over different numbers of groups.

7 MONTE CARLO STUDY

To support our theoretical claims and to shed more light on the performance of screening and

pooling strategies, we consider in this section several Monte Carlo experiments.

7.1 Simulation designs

Our benchmark setup is the static panel data model with coefficients possibly varying over

individuals but constant over time

yit =
3∑
l=1

xl,itβil + εit, i = 1, . . . , N ; t = 1, . . . , T, (23)

where xit1 = 1 and the remaining regressors are independently generated from the standard

normal distributions. To mimic the empirical data of sovereign CDS spreads, we also con-

sider regressors to follow an autoregressive process, and the details are provided in the online

appendix. The idiosyncratic errors εit are uncorrelated with regressors and independently nor-

mally distributed with mean zero and variance σ2
εi. We consider conditional heteroskedasticity,

such that the variance of errors varies across individuals and its size depends on a pre-specified

value of R2. The slope coefficients are cross-sectional heterogeneous. In particular, we consider

four cases with different degrees of heterogeneity in coefficients

DGP 1 (Homogenous): βil = 1 for all i and l.

DGP 2 (Weakly heterogeneous):

βi1, βi2 =

{
1, i = 1, . . . , [N/2]

3, i = [N/2] + 1, . . . , N,
βi3 =

{
1, i = 1, . . . , [N/3]

3, i = [N/3] + 1, . . . , N,

where [N/2] denotes the nearest integer value that is smaller than N/2.

DGP 3 (Strongly heterogeneous):

βi1, βi2 =


1, i = 1, . . . , [N/4]

2, i = [N/4] + 1, . . . , [N/2],

3, i = [N/2] + 1, . . . , [3N/4],

4, i = [3N/4] + 1, . . . , N,

βi3 =


1, i = 1, . . . , [N/5]

2, i = [N/5] + 1, . . . , [2N/5],

3, i = [2N/5] + 1, . . . , [3N/5],

4, i = [3N/5] + 1, . . . , N.

DGP 4 (Completely heterogeneous): βil = 0.1× i× l for all i and l.
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The sample size varies from N ∈ {10, 30} and T ∈ {20, 40, 80}, leading to six combinations of

N and T . To save space, presentation in this section is based on A = X ′X, focusing on the

forecasting performance. The simulation results with A = INK , focusing on the slope-coefficient

estimates, are very similar.

We compare the forecasting performance of Mallows pooling averaging with the pooled model,

Swamy’s feasible generalized least squared estimator (FGLS), individual time series model,

shrinkage estimator (7), a single pooling model selected by AIC or BIC, pooling averaging us-

ing relative values of AIC or BIC as weights (smoothed AIC/BIC), Bayesian pooling averaging

(BPA, see online appendix for the computation), and a C-Lasso estimator with the number of

groups determined by the information criterion (IC) defined by Su et al. (2016).9 All pooling

averaging and information-criterion-based forecasts are constructed from the preliminary model

screening method using C-Lasso as described in Section 6.10 To compute the Mallows pool-

ing averaging forecast, we proposed three versions of variance-covariance matrix estimator in

Section 5.1. Although these variance estimators are especially designed for specific error dis-

tributions, it is not guaranteed that one method would always produce lower MSFE than the

other in finite sample. Therefore, we consider three versions of variance-covariance estimators

for Mallows pooling averaging, and report the best choice, despite high similarity of the results

of using different estimators in all cases except DGP 1. Our simulation results are based on 1000

replications.

We evaluate all methods based on the risk (expected squared loss) following Hansen (2007).

All numbers are normalized with respect to the individual time series forecast, so that the number

of the individual forecast is always 1 and thus not reported. We emphasize that the purpose

of the simulation studies is not to show the superiority of one method in all cases. Instead, we

try to demonstrate that the performance depends on several factors, thus providing evidence for

the theory in Section 4. Also, we aim to understand how pooling averaging behaves in various

situations. According to simulation results, we provide applied researchers with practical rules

as to which methods are more likely to produce reliable results in a particular situation.

7.2 Results

We first present the results of the benchmark case when R2 = 0.9, and then we consider smaller

signal-to-noise ratios.

Insert TABLE 1 here

Table 1 presents the results with i.i.d regressors and a large R2. In DGP 1 of a homogeneous

9The tuning parameter for C-Lasso is chosen by trying different values and selecting the best one in terms of

risk. Comparison with more alternative methods can be found in the online appendix.
10We also compare with an M-estimation method for the latent group structure proposed by Liu et al. (2018).

This method is used to directly provide a forecast and to shrink the model space as an alternative to C-Lasso.

The forecast produced by M-estimation is close to that of C-Lasso, and pre-screening performance is also similar

to C-Lasso. Detailed results are provided in our online appendix.
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panel the pooled forecast always performs best as expected, almost identical to the FGLS fore-

cast, both of which are based on the average-effect estimators. The proposed MPA forecast is the

third best in most cases, closely following the pooled and FGLS forecasts, suggesting that the

Mallows criterion can still assign rather good weights in homogeneous panels. When the panel is

characterized by some degree of heterogeneity (DGP 2 and 3), MPA forecasts dominate others

in all cases. Particularly, MPA produces the minimum risk in 11 out of 12 cases, while C-Lasso

with the number of groups selected by the information criterion (IC) performs best in DGP 2

when N = 30 and T = 40. BPA appears to be a close competitor to MPA, especially when the

time span is short. It also seems more favourable than SBIC when N is large or T is small.

For the completely heterogeneous DGP 4, we find that MPA remains the best in most cases,

outperforming the individual forecast. The forecast based on the shrinkage estimator performs

rather well, and is the best when N is small and T is moderate or large (T = 40 or 80). This

observation may seem counterintuitive at the first glance, since one may expect the individual

forecast to perform well in completely heterogeneous panels. However, the simulation results

in fact support our theoretical argument in Section 4 that individual estimation can be inferior

to pooling averaging even when all coefficients are completely heterogeneous. This is because

although the individual estimators are unbiased, they are inefficient, especially under small T

or large noise. In contrast, pooling averaging makes good use of cross-section variation and

thus provides a more accurate forecast. Interestingly, we find that in most cases MPA produces

better forecasts than C-Lasso based on a single selected number of groups using IC. Hence, if the

forecasting is of central interest, averaging offers a sensible alternative to handle the uncertainty

in the number of groups, especially when the sample size is limited.

Insert TABLE 2 here

So far, the results are all based on DPGs with R2 = 0.9. The theory in Section 4 suggests

that greater noise weakens the advantages of pooling averaging estimates, but supports the use

of the pooled forecast. To verify this argument, we examine the effect of adding more noise to the

model by decreasing R2. We consider R2 ranging from 0.4 to 0.6, and the results are presented

in Table 2. When R2 = 0.6 (upper panel of Table 2), MPA remains the best in heterogeneous

panels (DGP 2 to 4), but the advantages of MPA over the pooled and FGLS forecast is much

smaller compared to the cases with R2 = 0.9. This is because when the estimation error is

more sizeable, the efficiency gains from pooling become more important. This result firmly

supports the theoretical argument in Section 4. If we decrease R2 to 0.5, we see even closer

performance of the pooled, FGLS, and MPA forecast, all of which dominantly outperform other

rivals. The pooled and FGLS forecast sometimes even performs the best in heterogeneous panels

since the efficiency gain of the pooled forecast dominates the bias when data are highly noisy.

As R2 further decreases to 0.4, the advantage of the pooled and FGLS forecasts becomes more

prominent. Furthermore, when the signal-to-noise ratio is low, suggesting a larger degree of

uncertainty in deciding the number of groups, the superiority of MPA to BPA and C-Lasso

based on a single selected number of groups becomes even more obvious.
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DGPs 1–4 consider various degrees of heterogeneity by changing the number of groups. An

equally important determinant of the degree of heterogeneity is the discrepancy between the co-

efficient values across groups. When the coefficient values get closer, the degree of heterogeneity

is reduced even though the number of groups is fixed, and this also favours the pooled or FGLS

methods. More detailed discussion and numerical evidence are provided in the online appendix.

In general, we find that MPA performs robustly well in panels with various degrees of het-

erogeneity. When the signal-to-noise ratio is moderate or high, MPA prevails. When the signal-

to-noise ratio is relatively low (reflected by a small R2 and/or a small T ) and the degree of

heterogeneity is weak, MPA tends to assign the most weights to the pooled model, gaining the

most efficiency, and thus still remains one of the best choices.

8 EXPLAIN AND FORECAST SOVEREIGN CREDIT

RISK

Now we have discussed the optimal pooling strategy in heterogeneous panels. We apply the

proposed method to explain and forecast cross-country sovereign credit risk. Since the breakout

of a wide range of financial crises, many countries have experienced a dramatic increase in

government debts, which has attracted extensive attention to the sovereign credit risk. It is of

key importance for both policy makers and financial market agents to understand the nature of

sovereign credit risk and to forecast future risks.

We focus on the sovereign credit default swap (CDS) spreads as a proxy of sovereign credit

risks. A CDS contract is an insurance contract that protects the buyer from credit events, e.g.

a loan default. Its spread, expressed in basis points, is the insurance premium that buyers have

to pay, and thus reflects the credit risk. To examine the determinants of sovereign CDS spreads

and forecast their future values, we collect the most recent cross-country data on sovereign

CDS spreads and financial indicators of macroeconomic fundamentals. In particular, we follow

Longstaff et al. (2011) to focus on spreads of five-year sovereign credit default swaps, and asso-

ciate the CDS spreads with a set of local and global variables. The local variables include local

stock market returns (lstock), changes in local exchange rates (fxrate), and changes in foreign

currency reserves (fxres). The global variables include the U.S. stock market returns (gmkt),

treasury yields (trsy), high-yield corporate bond spreads (hy), equity premium (eqp), volatility

risk premium (volp), equity flows (ef ), and bond flows (bf ). The data set is an updated version

of Longstaff et al. (2011) (see Longstaff et al. (2011) for detailed definition of variables). To have

a balanced panel, the updated data set contains 14 countries, i.e. Brazil, Bulgaria, Chile, China,

Hungary, Japan, Korea, Malaysia, Philippines, Poland, Romania, Slovak, South Africa, and

Thailand, and we use the monthly data starting from January 2003 to January 2016, resulting

in 156 time observations.

Recently, an increasing number of studies have tried to associate the changes of CDS spreads
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with various macroeconomic fundamentals (Dieckmann and Plank, 2012; Longstaff et al., 2011;

Aizenman et al., 2013). Despite the availability of a cross-country panel, most of these studies

analyse individual countries separately, which shows that there is indeed some common pattern

in the processes of sovereign CDS spreads across countries. It thus raises a question whether

a determinant has similar impacts on CDS spreads in different countries. More importantly,

individual-country studies can be rather inefficient since the cross-country information is not

utilized at all, especially when the time-series dimension is not extremely long. In our application,

the entire time span contains 156 observations, which is not a particular large sample to estimate

the effects of a relatively large number of determinants for each individual country separately.

Furthermore, given the prevailing financial crises, there are likely structural breaks in the effect of

determinants (Dieckmann and Plank, 2012; Qian et al., 2017). In the presence of time instability,

ignoring the breaks and estimating slope coefficients or making forecasts using the whole sample

of time series observations may not be the best strategy. Instead, it may require subsample

analysis to better understand the time-varying nature of the CDS spreads and perhaps provide

a more accurate forecast.11 This implies that the length of the estimation window span could be

even shorter, resulting in a larger degree of efficiency loss for individual time series estimation.

Hence, the bias-efficiency trade-off is especially important and appropriate pooling is highly

desirable.

To examine the determinants of sovereign CDS spreads and forecast its future values, we

consider the following model

∆CDSit = αi +X ′i,t−1βi + εit, i = 1, . . . , N, t = 1, . . . , T, (24)

where ∆CDSit is the first-differenced sovereign CDS spread of country i at time t, Xit is a 10×1

vector of covariates, and εit is the error term. The change variable is used as the dependent

variable, following Longstaff et al. (2011). Preliminary unit root tests show that the CDS

spread changes of all countries are generally stable. The lagged covariates are used mainly

for the forecasting purpose, and they also remove possible reverse causality from CDS spreads

to macroeconomic fundamentals to a certain degree, if not completely. Note that the slope

coefficients are allowed to be heterogeneous across countries. We normalize all covariates to

make the slope coefficients of individuals comparable.

8.1 Structural break detection

Since our pooling averaging techniques require that the data be stationary, we first examine

whether there exist obvious structural breaks. To detect and date possible structural breaks, it

is important to incorporate individual heterogeneity in slope coefficients.

11If the interest lies on forecasting, how to deal with structural breaks is more complicated, since it is not

guaranteed that the forecast based on the post-break subsample would always outperform the one using the

whole sample period (Pesaran et al., 2013). Nevertheless, completely ignoring structural breaks and using the

whole sample of periods without careful analysis is not an appropriate approach.
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We employ the recently developed break detection method by Baltagi et al. (2016) that

explicitly allows for heterogeneous slope coefficients, and conclude that there are two structural

breaks. The two estimated break points, corresponding to January 2009 and December 2009,

closely match important events during the global financial crisis in 2009. Particularly, although

US had already entered recession at the end of 2007, a wide range of global crises broke out

in late 2008 when Lehman Brothers declared bankruptcy and a number of European countries

slipped into banking crisis. After several negative signals on the financial markets released in

the last three months of 2008, e.g. a prediction of a deep recession in the UK by The Times

and S&P’s sovereign credit rating cut for a number of countries, the global economies became

highly unstable from January 2009, a situation that lasted for roughly a whole year. The two

break points result in 72 observations in the first regime, 11 in the second, and 73 in the last.

Given the moderate size of samples in each regime, efficiency is an important concern, and it

is particularly useful to make use of cross-section similarity and consider appropriate pooling

for estimation and forecasting purposes. Hence, we conditional on the breaks and we apply our

pooling averaging approach to each regime separately. A joint framework to deal with potential

breaks and pooling averaging is considered to be a topic for future research.

8.2 Effects of local and global variables

We examine the effect of determinants on sovereign CDS spreads using Mallows pooling aver-

aging. Existing studies on the determinants of sovereign CDS spreads typically estimate each

country separately (Longstaff et al., 2011; Dieckmann and Plank, 2012). This approach cannot

capture any common pattern nor the correlation between the countries, and it may be rather

inefficient if some countries share similar features. Alternatively, one can also estimate the av-

erage effect of determinants across all countries (Remolona et al., 2008). Our pooling averaging

approach can capture both heterogeneity and similarity across countries, and it outperforms the

individual estimators and average-effect estimator when the data are characterized by hetero-

geneity and moderate noise. Compared to the standard approaches, the implementation of MPA

requires a preliminary step of shrinking model space to facilitate computation, when the number

of individual units is large. This step may introduce extra uncertainty in the estimation and

forecast.

We estimate (24) using MPA, respectively, for the three regimes segmented according to

the two estimated structural break points. We employ the pre-screening approach described

in Section 6. We set the maximum number of groups Gmax to be N/2, and average grouped

estimators obtained from G = 1, . . . , Gmax. Robustness analysis suggests that results are sta-

ble for a reasonably wide range of Gmax. The implementation of C-Lasso requires a tuning

parameter. We follow Su et al. (2016) to consider the tuning parameter λ = cλs
2
Y T

1/3, where

cλ = {0.0625, 0.125, 0.25, 0.5, 1} is a geometrically increasing sequence and s2Y is the sample vari-

ance of yit. From the set of λs, we pick up the value that minimizes the risk as in the simulation.
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To compute the Mallows criterion, the conditional heteroskedastic variance structure is assumed.

Finally, like other model-averaging estimators, MPA does not directly provide a variance esti-

mator. To make an inference, we employ the bootstrap method to obtain standard errors as

suggested in Section 5.2. Particularly, we conduct cross-sectional resampling for B times. In

each replication, we shrink the model space using C-Lasso and average estimates obtained from

pre-screened models. The bootstrap standard errors can then be obtained based on these B

pooling averaging estimates.

Insert TABLE 3 here

Table 3 provides the MPA estimates of regime-specific slope coefficients for individual coun-

tries. To save space, we only report the results of the seven countries whose ratio of gross

government debt to GDP is more than 50% in 2016, given that the credit risk of these highly

leveraged countries is often of great interest for investors and policy makers.12 Since all variables

are normalized, we can compare the effects of different determinants within a country, and also

the effect of a variable between countries. We also compare the MPA estimates with the pooled

and individual estimates (reported in the online appendix).

We first examine the local variables. In the first regime before 2009, the effects of all lo-

cal determinants are insignificant for almost all countries. Nevertheless, the impact of these

determinants gets stronger after the crisis. In particular, the effect of local stock returns is

strengthened and becomes strongly significant and also much more heterogeneous in the third

regime. This differs from the individual estimates that report a counterintuitively positive effect

of local stock returns for several countries. The local exchange rate plays an important role in

the third regime in Brazil, China, and Japan, while the effect of foreign currency reserves is also

strong in these countries during the (post-)crisis period. Interestingly, we find that the effect

of local determinants appears stronger in bigger economies, such as Brazil and China, than in

smaller ones, such as Hungary, Poland, and Slovak. This suggests that the domestic economic

performance imposes a greater impact on the credit risk for bigger economies, especially during

the crisis, while the risk of smaller economies are more influenced by global determinants. Such

heterogeneity cannot be captured by the pooled estimates that report a homogeneously signif-

icant effect of local stock returns but insignificant overall effects of foreign exchange rates and

currency reserves.

Next, we examine the global variables. We find that the US stock return is the most salient

determinant before the crisis, imposing a negative impact on the credit spreads of all countries.

Interestingly, during and after the crisis, this effect becomes insignificant for many countries,

and some countries report a positive relation. This suggests that the optimistic signals from the

global market and agents’ confidence in the global and domestic market play a dominant role

during the tranquil period. In contrast, in the crisis period when the domestic market is volatile,

the substitution effect between domestic and global markets would play a more important role,

12The complete estimation results are available upon request.
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leading to a positive relationship. Treasury yield is another significant determinant that has

a negative effect for almost all countries in all regimes. This effect is particularly strong in

most Latin American countries, e.g. Brazil and Chile, but relatively weak in Southeast Asian

countries, e.g. Korea, Malaysia and Philippines. In contrast, the individual estimates report an

insignificant effect of treasury yield in many countries.

In general, we observe the time-varying feature of the effects of determinants due to financial

crisis. Countries do demonstrate heterogeneity, but also possess similarity to a certain extent.

MPA simultaneously incorporates both heterogeneity and similarity, which is not achievable for

either the pooled or individual time series estimators that are usually employed in the literature

of sovereign CDS spreads.

8.3 Out-of-sample forecasting

Next, we employ our MPA to forecast the sovereign CDS spreads, and compare with alterna-

tive methods listed in simulation. Given the existence of two structural breaks, we consider

forecasting based on three different samples, the full sample ignoring the structural breaks, the

subsample after the first break, and that after the second break. It is not guaranteed that

post-break subsamples always lead to better forecasts compared to the full sample due to bias-

efficiency trade-off.13 The forecasts are constructed using both fixed and expanding windows.

To evaluate the forecasting performance, in each case we divide the available time periods into

two sub-samples: the first τ% of the sample is used to estimate the coefficients and weights, and

the remaining are used for forecasting and evaluation. We let the forecasting proportion 1− τ%

vary among 0.01, 0.05, and 0.1. We evaluate the forecasts using the root mean square forecasting

error (RMSFE), which is averaged across 14 countries. To facilitate comparison, all numbers are

normalized with respect to the individual time series forecasts using the full sample.

Insert TABLE 4 here

Table 4 presents the out-of-sample forecasting performance of competing methods based

on the fixed window. It indeed shows that accommodating structural breaks does not always

lead to more accurate forecasts. With a relatively large and moderate out-of-sample proportion

1 − τ% = 0.1 and 0.05, using the full sample results in more accurate forecasts than using the

post-break samples. With out-of-sample proportion 0.01, the forecasts using the sample after the

first break (but ignoring the second break) lead to the most accurate forecast. This suggests that

the second break is not significant enough for the forecasting purpose, and using the pre-break

observations helps to gain more efficiency that offsets the bias. In general, MPA provides the

most accurate forecast, regardless of the sample in use and the out-of-sample proportion. When

only the post-break sample is used, the forecast based on the pooled model is most reliable. In

13There exist various methods to deal with the window-selection issue in time series forecasting, see, e.g.

Pesaran et al. (2013) and references therein. Optimal window selection in panel forecasting is an interesting topic

that deserves future research.

26



this case, MPA adaptively assigns the most weights to the pooled model, and it produces equally

good forecasts as the pooled model. In the case of expanding windows, one-step-ahead forecasts

are constructed at each time as the window expands. The forecasting performance of competing

methods is exactly the same as in the fixed window case, namely that MPA outperforms other

methods when the full sample is used, and it performs as well as the pooled model when only

subsamples are used. Detailed results are omitted but available upon request from the authors.

9 IMPLICATIONS AND DISCUSSIONS

In this paper we have proposed a novel optimal pooling averaging method to analyse the de-

terminants of sovereign CDS spreads in a potentially heterogeneous cross-country panel and to

forecast the future values of the spreads for each country. The forecasting performance of our

method generally outperforms the alternatives with good robustness.

Based on our theoretical and numerical results, we conclude that the performance of different

pooling estimators depends on the situation at hand. If the focus is to obtain the most accurate

estimator or forecast in terms of the minimum MSE, then the choice of estimator/forecast in

practice involves a trade-off between efficiency gains from pooling and bias due to heterogeneity.

This trade-off is jointly determined by a number of factors, such as the signal-to-noise ratio, the

degree of cross-sectional heterogeneity, the length of the times series, the number of regressors.

For example, it is possible that the data are characterized by a large degree of heterogeneity

but a low signal-to-noise ratio, or the other way around. Hence, the practical choice of esti-

mator/forecast should be made by considering all these factors simultaneously. We show that

the Mallows pooling averaging produces favourable and fairly robust results. In heterogeneous

panels with a moderate signal-to-noise ratio, MPA often performs best. Even when the panels

are homogeneous or data are highly noisy, MPA is still a reliable method whose performance is

only slightly worse than the best method (pooled or FGLS estimation).

We end this paper with practical recommendations on how to determine which estima-

tor/forecast to use in different situations. The first step is to estimate individual time series

separately, and compute the coefficient estimates and (adjusted) R2 for each regression. Despite

its possible inefficiency, estimation of individual regression can be used as a starting point be-

cause the coefficient estimates are consistent. In most cases, MPA is a safe choice due to its good

performance and robustness. If most individual regressions produce particularly low R2 and the

coefficient estimates vary little across individual units, the pooled or FGLS estimation could be

a better approach. Although our simulation studies consider a variety of DGPs, we emphasize

that these rules of thumb are concluded based on our given setup. There are still several cases

that we do not cover, such as dynamic panels and panels with cross-section dependence. Hence,

one needs to be cautious when applying these suggestions to aforementioned extensions.
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Table 1: Risk comparison: Independent regressors with R2 = 0.9

DGP MPA BPA C-Lasso SAIC SBIC AIC BIC Pool FGLS SHK

1 0.130 0.356 0.454 0.487 0.144 0.591 0.160 0.111 0.112 0.742

N = 10 2 0.341 0.370 0.604 0.444 0.429 0.477 0.474 4.342 4.429 0.955

T = 20 3 0.536 0.538 0.829 0.724 0.786 0.801 0.830 2.640 2.695 0.934

4 0.918 1.213 1.905 1.192 1.386 1.265 1.521 14.53 14.82 0.984

1 0.175 0.197 0.314 0.364 0.265 0.408 0.301 0.034 0.037 0.701

N = 30 2 0.158 0.159 0.194 0.247 0.204 0.259 0.214 4.148 4.192 0.943

T = 20 3 0.376 0.396 0.655 0.509 0.536 0.524 0.567 2.317 2.353 0.911

4 0.396 0.670 0.649 0.625 0.649 0.644 0.649 1.733 1.776 0.891

1 0.131 0.360 0.466 0.488 0.127 0.579 0.133 0.094 0.098 0.876

N = 10 2 0.268 0.410 0.300 0.458 0.284 0.501 0.297 8.852 8.932 0.988

T = 40 3 0.657 0.681 1.264 0.897 1.072 1.000 1.174 5.153 5.209 0.981

4 1.264 1.854 2.679 1.757 1.884 1.789 2.062 29.94 30.23 0.996

1 0.177 0.203 0.319 0.373 0.248 0.420 0.288 0.033 0.034 0.854

N = 30 2 0.105 0.141 0.089 0.273 0.164 0.282 0.181 8.257 8.290 0.985

T = 40 3 0.490 0.580 1.013 0.673 0.754 0.721 0.779 4.596 4.623 0.975

4 0.651 1.157 1.070 0.882 1.006 0.923 1.024 3.503 3.538 0.969

1 0.125 0.366 0.642 0.465 0.105 0.567 0.107 0.096 0.098 0.938

N = 10 2 0.311 0.436 0.901 0.632 0.344 0.700 0.351 17.47 17.56 0.997

T = 80 3 0.959 1.029 1.846 1.215 1.570 1.292 1.740 10.14 10.18 0.995

4 2.223 3.644 7.613 3.252 3.253 3.300 3.376 59.96 60.23 0.999

1 0.220 0.250 0.488 0.569 0.216 0.641 0.258 0.033 0.034 0.928

N = 30 2 0.184 0.240 0.793 0.507 0.311 0.524 0.343 16.55 16.58 0.996

T = 80 3 0.723 0.868 1.434 1.007 0.970 1.025 1.012 9.296 9.317 0.993

4 0.686 0.910 1.298 1.007 0.957 1.026 1.030 7.164 7.187 0.991

Notes:

1. Forecasts constructed using: MPA: Mallows pooling averaging estimator; BPA: Bayesian pooling averaging; C-

Lasso: C-Lasso estimator with the number of groups determined by IC; SAIC/SBIC: pooling averaging estimator

based on relative values of AIC/BIC; AIC/BIC: estimator selected based on minimum value information criterion;

Pool: pooled estimator; FGLS: Swamy’s estimator; SHK: shrinkage estimator.

2. All numbers are divided by the risk of the individual time series forecast.
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Table 2: Risk comparison under larger noise

DGP MPA BPA C-Lasso SAIC SBIC AIC BIC Pool FGLS SHK

R2 = 0.6

1 0.130 0.372 0.649 0.488 0.125 0.585 0.131 0.094 0.098 0.876

N = 10 2 0.330 0.672 0.768 0.697 0.411 0.790 0.465 0.348 0.339 0.899

T = 40 3 0.245 0.683 0.753 0.661 0.314 0.746 0.342 0.251 0.248 0.888

4 0.596 0.862 0.901 0.848 0.833 0.936 0.912 0.930 0.944 0.931

1 0.124 0.365 0.641 0.466 0.104 0.566 0.106 0.096 0.097 0.938

N = 10 2 0.487 0.684 0.831 0.770 0.598 0.863 0.666 0.582 0.589 0.960

T = 80 3 0.366 0.702 0.791 0.716 0.430 0.806 0.471 0.384 0.383 0.951

4 0.673 0.866 0.982 0.901 0.974 0.998 1.039 1.716 1.734 0.977

R2 = 0.5

1 0.128 0.381 0.454 0.506 0.124 0.608 0.133 0.094 0.098 0.876

N = 10 2 0.208 0.248 0.304 0.291 0.216 0.335 0.219 0.213 0.185 0.885

T = 40 3 0.164 0.241 0.353 0.322 0.180 0.363 0.184 0.163 0.128 0.879

4 0.386 0.406 0.610 0.599 0.550 0.634 0.604 0.470 0.463 0.905

1 0.124 0.365 0.641 0.466 0.104 0.566 0.106 0.096 0.097 0.938

N = 10 2 0.306 0.604 0.758 0.679 0.361 0.770 0.399 0.314 0.308 0.949

T = 80 3 0.201 0.617 0.746 0.642 0.276 0.730 0.296 0.227 0.206 0.944

4 0.586 0.866 0.907 0.847 0.796 0.935 0.875 0.818 0.826 0.964

R2 = 0.4

1 0.130 0.371 0.649 0.488 0.125 0.585 0.131 0.094 0.098 0.876

N = 10 2 0.161 0.539 0.715 0.597 0.204 0.689 0.224 0.153 0.113 0.877

T = 40 3 0.137 0.562 0.714 0.592 0.195 0.681 0.209 0.128 0.085 0.874

4 0.265 0.824 0.805 0.696 0.401 0.771 0.442 0.265 0.238 0.885

1 0.124 0.364 0.641 0.466 0.104 0.566 0.106 0.096 0.097 0.938

N = 10 2 0.200 0.525 0.718 0.613 0.232 0.710 0.252 0.195 0.165 0.943

T = 80 3 0.165 0.547 0.717 0.602 0.202 0.687 0.216 0.157 0.121 0.939

4 0.394 0.852 0.835 0.761 0.516 0.844 0.565 0.418 0.409 0.952

Notes: See footnote of Table 1.
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Table 4: Out-of-sample forecasting comparison with fixed window

Full sample Post-first-break sample Post-second-break sample

1− τ% 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

MPA 0.868 0.890 1.020 1.469 0.923 0.476 1.578 1.248 0.571

BPA 0.891 0.896 1.027 1.516 0.915 0.505 1.624 1.257 0.726

C-Lasso 0.875 0.892 1.024 1.469 0.924 0.476 1.580 1.248 0.571

SAIC 0.870 0.891 1.022 1.470 0.924 0.477 1.582 1.264 0.730

SBIC 0.875 0.892 1.024 1.469 0.924 0.476 1.580 1.248 0.571

AIC 0.875 0.892 1.024 1.469 0.924 0.476 1.580 1.271 0.786

BIC 0.875 0.892 1.024 1.469 0.924 0.476 1.580 1.248 0.571

Pool 0.875 0.892 1.024 1.469 0.924 0.476 1.580 1.248 0.571

FGLS 0.937 0.925 1.006 1.467 1.033 0.492 1.676 1.335 0.724

SHK 0.980 0.982 0.992 1.552 0.967 0.508 1.636 1.273 0.687

Indiv 1.000 1.000 1.000 1.622 1.012 0.562 1.715 1.324 0.763

R2 0.098 0.095 0.094 0.176 0.167 0.161 0.208 0.198 0.181

Notes:

1. τ denotes percentage of sample used for parameter estimation. Abbreviations explained in footnote 1 of

Table1.

2. RMSFE are divided by the RMSFE of the individual time series forecast using the full sample.

3. Numbers in bold are the unique minimum values in the corresponding column.
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